IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v17y2015i3d10.1007_s11009-014-9396-5.html
   My bibliography  Save this article

Distributional Bounds for Portfolio Risk with Tail Dependence

Author

Listed:
  • Kunio So

    (Keio University)

  • Junichi Imai

    (Keio University)

Abstract

The present paper proposes a new method for estimating portfolio risk by applying the concept of bounds to a dependence structure. We introduce four tail dependence measures as partial dependence information and derive bounds on the distribution of a non-decreasing function to obtain bounds on risk measures. We show that bounds on risk measures can be tightened significantly in the probability levels with which we are concerned, those for financial risk management. In the present paper, we provide theorems describing the distributional bounds of the proposed method and prove that these bounds are pointwise best-possible bounds. Furthermore, we calculate risk measures, i.e., value at risk and expected shortfall, from empirical return data and compare the effectiveness of the proposed model with that of typical parametric copula models.

Suggested Citation

  • Kunio So & Junichi Imai, 2015. "Distributional Bounds for Portfolio Risk with Tail Dependence," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 795-816, September.
  • Handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-014-9396-5
    DOI: 10.1007/s11009-014-9396-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-014-9396-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-014-9396-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Embrechts, Paul & Hoing, Andrea & Puccetti, Giovanni, 2005. "Worst VaR scenarios," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 115-134, August.
    4. Denuit, M. & Genest, C. & Marceau, E., 1999. "Stochastic bounds on sums of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 85-104, September.
    5. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    6. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    2. Sordo, M.A. & Bello, A.J. & Suárez-Llorens, A., 2018. "Stochastic orders and co-risk measures under positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 105-113.
    3. Cascos, Ignacio & Molchanov, Ilya, 2013. "Choosing a random distribution with prescribed risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 599-605.
    4. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    5. McNeil, Alexander J. & Smith, Andrew D., 2012. "Multivariate stress scenarios and solvency," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 299-308.
    6. Cornilly, D. & Rüschendorf, L. & Vanduffel, S., 2018. "Upper bounds for strictly concave distortion risk measures on moment spaces," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 141-151.
    7. Kaas, Rob & Laeven, Roger J.A. & Nelsen, Roger B., 2009. "Worst VaR scenarios with given marginals and measures of association," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 146-158, April.
    8. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    9. Mesfioui, Mhamed & Quessy, Jean-Francois, 2005. "Bounds on the value-at-risk for the sum of possibly dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 135-151, August.
    10. Yiting Fan & Rui Fang, 2022. "Some Results on Measures of Interaction among Risks," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    11. Koch-Medina, Pablo & Munari, Cosimo & Svindland, Gregor, 2018. "Which eligible assets are compatible with comonotonic capital requirements?," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 18-26.
    12. Ye, Wuyi & Zhou, Yi & Chen, Pengzhan & Wu, Bin, 2024. "A simulation-based method for estimating systemic risk measures," European Journal of Operational Research, Elsevier, vol. 313(1), pages 312-324.
    13. Bernard, Carole & Jiang, Xiao & Wang, Ruodu, 2014. "Risk aggregation with dependence uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 93-108.
    14. Gao, Fuqing & Wang, Shaochen, 2011. "Asymptotic behavior of the empirical conditional value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 345-352.
    15. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    16. Mai Jan-Frederik & Scherer Matthias, 2013. "What makes dependence modeling challenging? Pitfalls and ways to circumvent them," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 287-306, December.
    17. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    18. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    19. Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024. "Robust distortion risk measures," Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
    20. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:17:y:2015:i:3:d:10.1007_s11009-014-9396-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.