IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i4d10.1007_s11009-013-9352-9.html
   My bibliography  Save this article

Compound Poisson Approximation to Convolutions of Compound Negative Binomial Variables

Author

Listed:
  • N. S. Upadhye

    (Indian Institute of Technology Madras)

  • P. Vellaisamy

    (Indian Institute of Technology Bombay)

Abstract

In this paper, the problem of compound Poisson approximation to the convolution of compound negative binomial distributions, under total variation distance, is considered. First, we obtain an error bound using the method of exponents and it is compared with existing ones. It is known that Kerstan’s method is more powerful in compound approximation problems. We employ Kerstan’s method to obtain better estimates, using higher-order approximations. These bounds are of higher-order accuracy and improve upon some of the known results in the literature. Finally, an interesting application to risk theory is discussed.

Suggested Citation

  • N. S. Upadhye & P. Vellaisamy, 2014. "Compound Poisson Approximation to Convolutions of Compound Negative Binomial Variables," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 951-968, December.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9352-9
    DOI: 10.1007/s11009-013-9352-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-013-9352-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-013-9352-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerber, Hans U., 1984. "Error bounds for the compound poisson approximation," Insurance: Mathematics and Economics, Elsevier, vol. 3(3), pages 191-194, July.
    2. Vellaisamy, P. & Chaudhuri, B., 1999. "On compound Poisson approximation for sums of random variables," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 179-189, January.
    3. Roos, Bero, 1999. "On the Rate of Multivariate Poisson Convergence," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 120-134, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Beghin & P. Vellaisamy, 2018. "Space-Fractional Versions of the Negative Binomial and Polya-Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 463-485, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genest, Christian & Marceau, Etienne & Mesfioui, Mhamed, 2003. "Compound Poisson approximations for individual models with dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 73-91, February.
    2. Roos, Bero, 2001. "Sharp constants in the Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 155-168, April.
    3. Denuit, Michel & Van Bellegem, Sébastien, 2001. "On the stop-loss and total variation distances between random sums," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 153-165, June.
    4. Iscoe, Ian & Kreinin, Alexander, 2007. "Valuation of synthetic CDOs," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3357-3376, November.
    5. Dhaene, Jan & Vandebroek, Martina, 1995. "Recursions for the individual model," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 31-38, April.
    6. Kruopis, Julius & Čekanavičius, Vydas, 2014. "Compound Poisson approximations for symmetric vectors," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 30-42.
    7. Novak, S.Y. & Xia, A., 2012. "On exceedances of high levels," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 582-599.
    8. Marco Faravelli & Priscilla Man, 2021. "Generalized majority rules: utilitarian welfare in large but finite populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(1), pages 21-48, July.
    9. Vijay Krishna & John Morgan, 2015. "Majority Rule and Utilitarian Welfare," American Economic Journal: Microeconomics, American Economic Association, vol. 7(4), pages 339-375, November.
    10. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    11. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    12. Roos, Bero, 2007. "On variational bounds in the compound Poisson approximation of the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 403-414, May.
    13. Yang, Jingping & Zhou, Shulin & Zhang, Zhenyong, 2005. "The compound Poisson random variable's approximation to the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 57-77, February.
    14. Goovaerts, M. J. & Dhaene, J., 1996. "The compound Poisson approximation for a portfolio of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 18(1), pages 81-85, May.
    15. Upadhye, N.S. & Vellaisamy, P., 2013. "Improved bounds for approximations to compound distributions," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 467-473.
    16. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeiLi, 2008. "Pricing catastrophe options in discrete operational time," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 422-430, December.
    17. Chang, Carolyn W. & Chang, Jack S.K. & Lu, WeLi, 2010. "Pricing catastrophe options with stochastic claim arrival intensity in claim time," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 24-32, January.
    18. Krishna, Vijay & Morgan, John, 2012. "Voluntary voting: Costs and benefits," Journal of Economic Theory, Elsevier, vol. 147(6), pages 2083-2123.
    19. Hürlimann, Werner, 1995. "A uniform approximation to the sampling distribution of the coefficient of variation," Statistics & Probability Letters, Elsevier, vol. 24(3), pages 263-268, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:4:d:10.1007_s11009-013-9352-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.