IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i2p467-473.html
   My bibliography  Save this article

Improved bounds for approximations to compound distributions

Author

Listed:
  • Upadhye, N.S.
  • Vellaisamy, P.

Abstract

In this work, we consider compound negative binomial and compound Poisson approximations to the generalized Poisson–binomial distribution. We derive some total variation upper bounds which improve on the existing results in terms of the order of approximation. An application is also discussed.

Suggested Citation

  • Upadhye, N.S. & Vellaisamy, P., 2013. "Improved bounds for approximations to compound distributions," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 467-473.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:467-473
    DOI: 10.1016/j.spl.2012.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212003938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vydas Čekanavičius & Bero Roos, 2006. "Compound Binomial Approximations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 187-210, March.
    2. Vydas Čekanavičius & Bero Roos, 2006. "Compound binomial approximations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(4), pages 815-815, December.
    3. Roos, Bero, 1999. "On the Rate of Multivariate Poisson Convergence," Journal of Multivariate Analysis, Elsevier, vol. 69(1), pages 120-134, April.
    4. Steve Drekic & Gordon Willmot, 2005. "On the Moments of the Time of Ruin with Applications to Phase-Type Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kruopis, Julius & Čekanavičius, Vydas, 2014. "Compound Poisson approximations for symmetric vectors," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 30-42.
    2. A. Elijio & V. Čekanavičius, 2015. "Compound Poisson approximation to weighted sums of symmetric discrete variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 195-210, February.
    3. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    4. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    5. Marco Faravelli & Priscilla Man, 2021. "Generalized majority rules: utilitarian welfare in large but finite populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(1), pages 21-48, July.
    6. Alessandra Carleo & Mariafortuna Pietroluongo, 2014. "On matrix-exponential distributions in risk theory," Discussion Papers 2_2014, CRISEI, University of Naples "Parthenope", Italy.
    7. Roos, Bero, 2001. "Sharp constants in the Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 155-168, April.
    8. Jiechang Ruan & Wenguang Yu & Ke Song & Yihan Sun & Yujuan Huang & Xinliang Yu, 2019. "A Note on a Generalized Gerber–Shiu Discounted Penalty Function for a Compound Poisson Risk Model," Mathematics, MDPI, vol. 7(10), pages 1-12, September.
    9. N. S. Upadhye & P. Vellaisamy, 2014. "Compound Poisson Approximation to Convolutions of Compound Negative Binomial Variables," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 951-968, December.
    10. Novak, S.Y. & Xia, A., 2012. "On exceedances of high levels," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 582-599.
    11. Vijay Krishna & John Morgan, 2015. "Majority Rule and Utilitarian Welfare," American Economic Journal: Microeconomics, American Economic Association, vol. 7(4), pages 339-375, November.
    12. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    13. Krishna, Vijay & Morgan, John, 2012. "Voluntary voting: Costs and benefits," Journal of Economic Theory, Elsevier, vol. 147(6), pages 2083-2123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:2:p:467-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.