Value at Ruin and Tail Value at Ruin of the Compound Poisson Process with Diffusion and Efficient Computational Methods
Author
Abstract
Suggested Citation
DOI: 10.1007/s11009-012-9316-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dufresne, François & Gerber, Hans U., 1989. "Three Methods to Calculate the Probability of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 19(1), pages 71-90, April.
- Riccardo Gatto, 2012. "Saddlepoint Approximations to Tail Probabilities and Quantiles of Inhomogeneous Discounted Compound Poisson Processes with Periodic Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1053-1074, December.
- Riccardo Gatto, 2010. "A Saddlepoint Approximation to the Distribution of Inhomogeneous Discounted Compound Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 12(3), pages 533-551, September.
- Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
- Wang, Suojin, 1995. "One-step saddlepoint approximations for quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 20(1), pages 65-74, July.
- Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2006. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 10(3), pages 427-448, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cossette, Hélène & Marceau, Etienne & Trufin, Julien & Zuyderhoff, Pierre, 2020. "Ruin-based risk measures in discrete-time risk models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 246-261.
- Riccardo Gatto & Benjamin Baumgartner, 2016. "Saddlepoint Approximations to the Probability of Ruin in Finite Time for the Compound Poisson Risk Process Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 217-235, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gatto, Riccardo, 2008. "A saddlepoint approximation to the probability of ruin in the compound Poisson process with diffusion," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1948-1954, September.
- Yacine Koucha & Alfredo D. Egidio dos Reis, 2021. "Approximations to ultimate ruin probabilities with a Wienner process perturbation," Papers 2107.02537, arXiv.org.
- Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2013. "Valuing equity-linked death benefits in jump diffusion models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 615-623.
- Riccardo Gatto, 2019. "Saddlepoint Approximation for Data in Simplices: A Review with New Applications," Stats, MDPI, vol. 2(1), pages 1-27, February.
- Riccardo Gatto & Benjamin Baumgartner, 2016. "Saddlepoint Approximations to the Probability of Ruin in Finite Time for the Compound Poisson Risk Process Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 217-235, March.
- Riccardo Gatto, 2012. "Saddlepoint Approximations to Tail Probabilities and Quantiles of Inhomogeneous Discounted Compound Poisson Processes with Periodic Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1053-1074, December.
- Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
- Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
- Avram, F. & Pistorius, M., 2014. "On matrix exponential approximations of ruin probabilities for the classic and Brownian perturbed Cramér–Lundberg processes," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 57-64.
- Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
- Loisel, Stéphane & Trufin, Julien, 2014.
"Properties of a risk measure derived from the expected area in red,"
Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
- Stéphane Loisel & Julien Trufin, 2014. "Properties of a risk measure derived from the expected area in red," Post-Print hal-00870224, HAL.
- Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
- Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021.
"Optimal control of investment, premium and deductible for a non-life insurance company,"
Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
- Bent Jesper Christensen & Juan Carlos Parra-Alvarez & Rafael Serrano, 2020. "Optimal control of investment, premium and deductible for a non-life insurance company," CREATES Research Papers 2020-11, Department of Economics and Business Economics, Aarhus University.
- Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
- Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
- Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
- Claude Lefèvre & Stéphane Loisel & Muhsin Tamturk & Sergey Utev, 2018.
"A Quantum-Type Approach to Non-Life Insurance Risk Modelling,"
Risks, MDPI, vol. 6(3), pages 1-17, September.
- Claude Lefèvre & Stéphane Loisel & Muhsin Tamturk & Sergey Utev, 2018. "A Quantum-Type Approach to Non-Life Insurance Risk Modelling," Post-Print hal-01995767, HAL.
- Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317391, HAL.
- Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
- Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
More about this item
Keywords
Coherent measure of risk; Daniels’ exponent; Fast Fourier transform; Lundberg’s exponent; Probability of ruin; Probabilites of ruin due to claim and to oscillation; Richardson’s extrapolation; Saddlepoint approximation; Stability; Upper and lower bounds;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:3:d:10.1007_s11009-012-9316-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.