IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i3d10.1007_s11009-012-9313-8.html
   My bibliography  Save this article

Approximation of Fractional Brownian Motion by Martingales

Author

Listed:
  • Sergiy Shklyar

    (Kyiv National Taras Shevchenko University)

  • Georgiy Shevchenko

    (Kyiv National Taras Shevchenko University)

  • Yuliya Mishura

    (Kyiv National Taras Shevchenko University)

  • Vadym Doroshenko

    (Kyiv National Taras Shevchenko University)

  • Oksana Banna

    (Kyiv National Taras Shevchenko University)

Abstract

We study the problem of optimal approximation of a fractional Brownian motion by martingales. We prove that there exists a unique martingale closest to fractional Brownian motion in a specific sense. It shown that this martingale has a specific form. Numerical results concerning the approximation problem are given.

Suggested Citation

  • Sergiy Shklyar & Georgiy Shevchenko & Yuliya Mishura & Vadym Doroshenko & Oksana Banna, 2014. "Approximation of Fractional Brownian Motion by Martingales," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 539-560, September.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:3:d:10.1007_s11009-012-9313-8
    DOI: 10.1007/s11009-012-9313-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-012-9313-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-012-9313-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enriquez, Nathanaël, 2004. "A simple construction of the fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 203-223, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garzón, J. & Gorostiza, L.G. & León, J.A., 2009. "A strong uniform approximation of fractional Brownian motion by means of transport processes," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3435-3452, October.
    2. Dai, Hongshuai & Li, Yuqiang, 2010. "A weak limit theorem for generalized multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 348-356, March.
    3. Bojdecki, Tomasz & Talarczyk, Anna, 2012. "Particle picture interpretation of some Gaussian processes related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2134-2154.
    4. Davidson, James & Hashimzade, Nigar, 2009. "Type I and type II fractional Brownian motions: A reconsideration," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2089-2106, April.
    5. Hongshuai Dai, 2013. "Convergence in Law to Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 26(3), pages 676-696, September.
    6. Luis G. Gorostiza & Reyla A. Navarro & Eliane R. Rodrigues, 2004. "Some Long-Range Dependence Processes Arising from Fluctuations of Particle Systems," RePAd Working Paper Series lrsp-TRS401, Département des sciences administratives, UQO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:3:d:10.1007_s11009-012-9313-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.