IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v16y2014i1d10.1007_s11009-012-9309-4.html
   My bibliography  Save this article

On the Use of Bivariate Mellin Transform in Bivariate Random Scaling and Some Applications

Author

Listed:
  • N. Balakrishnan

    (McMaster University)

  • A. Stepanov

    (Izmir University of Economics)

Abstract

We discuss here the problem of bivariate random scaling. Both direct and inverse problems of bivariate random scaling are solved by two methods. While the first method is a distributional one, the second method is an indirect one associated with bivariate Mellin transform. Finally, we use bivariate random scaling for some statistical and simulational applications.

Suggested Citation

  • N. Balakrishnan & A. Stepanov, 2014. "On the Use of Bivariate Mellin Transform in Bivariate Random Scaling and Some Applications," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 235-244, March.
  • Handle: RePEc:spr:metcap:v:16:y:2014:i:1:d:10.1007_s11009-012-9309-4
    DOI: 10.1007/s11009-012-9309-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-012-9309-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-012-9309-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cline, D. B. H. & Samorodnitsky, G., 1994. "Subexponentiality of the product of independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 49(1), pages 75-98, January.
    2. Enkelejd Hashorva & Anthony G. Pakes & Qihe Tang, 2010. "Asymptotics of Random Contractions," Papers 1008.0126, arXiv.org.
    3. Hashorva, Enkelejd & Pakes, Anthony G. & Tang, Qihe, 2010. "Asymptotics of random contractions," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 405-414, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mijanović, Andjela & Popović, Božidar V. & Witkovský, Viktor, 2023. "A numerical inversion of the bivariate characteristic function," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    2. Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yingying & Hu, Shuhe & Wu, Tao, 2011. "The tail probability of the product of dependent random variables from max-domains of attraction," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1876-1882.
    2. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    3. Chen, Yiqing & Liu, Jiajun & Liu, Fei, 2015. "Ruin with insurance and financial risks following the least risky FGM dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 98-106.
    4. Jing Liu & Huan Zhang, 2017. "Asymptotic Estimates for the One-Year Ruin Probability under Risky Investments," Risks, MDPI, vol. 5(2), pages 1-11, May.
    5. Qu, Zhihui & Chen, Yu, 2013. "Approximations of the tail probability of the product of dependent extremal random variables and applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 169-178.
    6. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding basis risk using s-convex orders on Beta-unimodal distributions," Working Papers hal-02611208, HAL.
    7. Mercè Claramunt, M. & Lefèvre, Claude & Loisel, Stéphane & Montesinos, Pierre, 2022. "Basis risk management and randomly scaled uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 123-139.
    8. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    9. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    10. Hashorva, Enkelejd & Ling, Chengxiu & Peng, Zuoxiang, 2014. "Second-order tail asymptotics of deflated risks," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 88-101.
    11. Hashorva, Enkelejd & Li, Jinzhu, 2013. "ECOMOR and LCR reinsurance with gamma-like claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 206-215.
    12. Ling, Chengxiu & Peng, Zuoxiang, 2016. "Tail asymptotics of generalized deflated risks with insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 220-231.
    13. Hashorva, Enkelejd, 2015. "Extremes of aggregated Dirichlet risks," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 334-345.
    14. Popivoda, Goran & Stamatović, Siniša, 2019. "On probability of high extremes of Gaussian fields with a smooth random trend," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 29-35.
    15. Guillén, Montserrat & Sarabia, José María & Prieto, Faustino, 2013. "Simple risk measure calculations for sums of positive random variables," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 273-280.
    16. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    17. Yang, Haizhong & Sun, Suting, 2013. "Subexponentiality of the product of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2039-2044.
    18. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    19. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    20. Shen, Xinmei & Lin, Zhengyan, 2008. "Precise large deviations for randomly weighted sums of negatively dependent random variables with consistently varying tails," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3222-3229, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:16:y:2014:i:1:d:10.1007_s11009-012-9309-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.