Quantitative Non-Geometric Convergence Bounds for Independence Samplers
Author
Abstract
Suggested Citation
DOI: 10.1007/s11009-009-9157-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fort, G. & Moulines, E., 2003. "Polynomial ergodicity of Markov transition kernels," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 57-99, January.
- Marchev, Dobrin & Hobert, James P., 2004. "Geometric Ergodicity of van Dyk and Meng's Algorithm for the Multivariate Student's t Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 228-238, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.
- Gareth O. Roberts & Jeffrey S. Rosenthal, 2023. "Polynomial Convergence Rates of Piecewise Deterministic Markov Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-18, March.
- Mika Meitz & Pentti Saikkonen, 2019. "Subgeometric ergodicity and $\beta$-mixing," Papers 1904.07103, arXiv.org, revised Apr 2019.
- Fort Gersende & Gobet Emmanuel & Moulines Eric, 2017. "MCMC design-based non-parametric regression for rare event. Application to nested risk computations," Monte Carlo Methods and Applications, De Gruyter, vol. 23(1), pages 21-42, March.
- Mika Meitz & Pentti Saikkonen, 2022. "Subgeometrically ergodic autoregressions with autoregressive conditional heteroskedasticity," Papers 2205.11953, arXiv.org, revised Apr 2023.
- Meitz, Mika & Saikkonen, Pentti, 2022.
"Subgeometrically Ergodic Autoregressions,"
Econometric Theory, Cambridge University Press, vol. 38(5), pages 959-985, October.
- Mika Meitz & Pentti Saikkonen, 2019. "Subgeometrically ergodic autoregressions," Papers 1904.07089, arXiv.org, revised Mar 2020.
- Roy, Vivekananda & Hobert, James P., 2010. "On Monte Carlo methods for Bayesian multivariate regression models with heavy-tailed errors," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1190-1202, May.
- Connor, S.B. & Fort, G., 2009. "State-dependent Foster-Lyapunov criteria for subgeometric convergence of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4176-4193, December.
More about this item
Keywords
Markov chain; MCMC; Independence sampler; Convergence bounds;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:2:d:10.1007_s11009-009-9157-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.