IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i1d10.1007_s11009-009-9137-3.html
   My bibliography  Save this article

About Earthquake Forecasting by Markov Renewal Processes

Author

Listed:
  • Elsa Garavaglia

    (Politecnico di Milano)

  • Raffaella Pavani

    (Politecnico di Milano)

Abstract

We propose and validate a new method for the evaluation of seismic hazard. In particular, our aim is to model large earthquakes consistently with the underlying geophysics. Therefore we propose a non-Poisson model, which takes into account occurrence history, improved with some physical constraints. Among the prevalent non-Poisson models, we chose the Markov renewal process, which is expected to be sufficient to capture the main characteristics, maintaining simplicity in analysis. However, due to the introduction of some physical constraint, our process differs significantly from others already presented in literature. A mixture of exponential + Weibull distributions is proposed for the waiting times and their parameters are estimated following the likelihood method. We validated our model, using data of earthquakes of high severity occurred in Turkey during the 20th century. Our results exhibit a good accordance with the real events.

Suggested Citation

  • Elsa Garavaglia & Raffaella Pavani, 2011. "About Earthquake Forecasting by Markov Renewal Processes," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 155-169, March.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:1:d:10.1007_s11009-009-9137-3
    DOI: 10.1007/s11009-009-9137-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-009-9137-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-009-9137-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enrique E. Alvarez, 2005. "Estimation in Stationary Markov Renewal Processes, with Application to Earthquake Forecasting in Turkey," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 119-130, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Asaduzzaman & A. Latif, 2014. "A parametric Markov renewal model for predicting tropical cyclones in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 597-612, September.
    2. Iliopoulos, A. & Chorozoglou, D. & Kourouklas, C. & Mangira, O. & Papadimitriou, E., 2020. "Memory and renewal aging of strong earthquakes in Hellenic seismicity," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    3. Battarra, Maria & Balcik, Burcu & Xu, Huifu, 2018. "Disaster preparedness using risk-assessment methods from earthquake engineering," European Journal of Operational Research, Elsevier, vol. 269(2), pages 423-435.
    4. Md. Asaduzzaman & A. Latif, 2014. "A parametric Markov renewal model for predicting tropical cyclones in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 597-612, September.
    5. Danisman, Ozgur & Uzunoglu Kocer, Umay, 2021. "Hidden Markov models with binary dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    6. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.
    7. Yanxing Zhao & H. Nagaraja, 2011. "Fisher information in window censored renewal process data and its applications," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 791-825, August.
    8. William Mohanty & Alok Mohapatra & Akhilesh Verma, 2015. "A probabilistic approach toward earthquake hazard assessment using two first-order Markov models in Northeastern India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2399-2419, February.
    9. Somayajulu L. N. Dhulipala & Madeleine M. Flint, 2020. "Capabilities of multivariate Bayesian inference toward seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3123-3144, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:1:d:10.1007_s11009-009-9137-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.