Using Householder’s method to improve the accuracy of the closed-form formulas for implied volatility
Author
Abstract
Suggested Citation
DOI: 10.1007/s00186-021-00763-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Curtis, Charles E., Jr. & Carriker, Gordon L., 1988. "Estimating Implied Volatility Directly from "Nearest-to-the-Money" Commodity Option Premiums," Working Papers 116875, Clemson University, Department of Agricultural and Applied Economics.
- Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
- Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021.
"Challenges in approximating the Black and Scholes call formula with hyperbolic tangents,"
Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
- Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2018. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Papers 1810.04623, arXiv.org.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
- Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
- Minqiang Li & Kyuseok Lee, 2011.
"An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility,"
Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
- Li, Minqiang, 2008. "An Adaptive Succesive Over-relaxation Method for Computing the Black-Scholes Implied Volatility," MPRA Paper 6867, University Library of Munich, Germany.
- Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
- Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006.
"Pricing and Inference with Mixtures of Conditionally Normal Processes,"
Working Papers
2006-28, Center for Research in Economics and Statistics.
- Bertholon, H. & Monfort, A. & Pegoraro, F., 2007. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working papers 188, Banque de France.
- Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
- Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
- Dan Stefanica & Radoš Radoičić, 2016. "A sharp approximation for ATM-forward option prices and implied volatilites," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-24, March.
- Nappo, Giovanna & Marchetti, Fabio Massimo & Vagnani, Gianluca, 2023. "Traders’ heterogeneous beliefs about stock volatility and the implied volatility skew in financial options markets," Finance Research Letters, Elsevier, vol. 53(C).
- Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
- Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
- Yang, Seungho & Oh, Gabjin, 2020. "A Bayesian estimation of exponential Lévy models for implied volatility smile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Jingzhi Huang & Liuren Wu, 2004.
"Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes,"
Finance
0401002, University Library of Munich, Germany.
- Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes," Econometric Society 2004 North American Winter Meetings 405, Econometric Society.
- Ivan Matić & Radoš Radoičić & Dan Stefanica, 2017. "Pólya-based approximation for the ATM-forward implied volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-15, June.
- Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
- Sukhomlin, Nikolay & Santana Jiménez, Lisette Josefina, 2010. "Problema de calibración de mercado y estructura implícita del modelo de bonos de Black-Cox = Market Calibration Problem and the Implied Structure of the Black-Cox Bond Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 73-98, December.
- Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
- Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
- Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021.
"Challenges in approximating the Black and Scholes call formula with hyperbolic tangents,"
Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
- Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2018. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Papers 1810.04623, arXiv.org.
- repec:hum:wpaper:sfb649dp2005-022 is not listed on IDEAS
- Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
More about this item
Keywords
Option pricing; Black–Scholes formula; Implied volatility; Householder’s method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:3:d:10.1007_s00186-021-00763-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.