IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v94y2021i3d10.1007_s00186-021-00763-9.html
   My bibliography  Save this article

Using Householder’s method to improve the accuracy of the closed-form formulas for implied volatility

Author

Listed:
  • Daniel Wei-Chung Miao

    (National Taiwan University of Science and Technology)

  • Xenos Chang-Shuo Lin

    (Aletheia University)

  • Chang-Yao Lin

    (National Taiwan University of Science and Technology)

Abstract

Existing closed-form formulas for implied volatilities perform differently for options with different moneyness and maturities. When the accuracy requirement is high, one usually resorts to Newton’s method to obtain accurate results. While this method works well, the procedure is no longer a closed-form expression and an unknown number of iterations are required. To achieve high accuracy over a wide range of moneyness and maturities without losing their closed-form nature, we propose to use Householder’s method to enhance the existing formulas. We derive the general form of the high order derivatives (with respect to volatility) of the Black–Scholes pricing function and its reciprocal function, which leads to the iterative formula of Householder’s method in closed-form. Our numerical analysis demonstrates the performance improvements when Householder’s method is applied to three best formulas in the literature and discusses how the required level of accuracy depends on moneyness and maturities.

Suggested Citation

  • Daniel Wei-Chung Miao & Xenos Chang-Shuo Lin & Chang-Yao Lin, 2021. "Using Householder’s method to improve the accuracy of the closed-form formulas for implied volatility," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 493-528, December.
  • Handle: RePEc:spr:mathme:v:94:y:2021:i:3:d:10.1007_s00186-021-00763-9
    DOI: 10.1007/s00186-021-00763-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-021-00763-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-021-00763-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Curtis, Charles E., Jr. & Carriker, Gordon L., 1988. "Estimating Implied Volatility Directly from "Nearest-to-the-Money" Commodity Option Premiums," Working Papers 116875, Clemson University, Department of Agricultural and Applied Economics.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    6. Corrado, Charles J. & Miller, Thomas Jr., 1996. "A note on a simple, accurate formula to compute implied standard deviations," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 595-603, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    2. Minqiang Li & Kyuseok Lee, 2011. "An adaptive successive over-relaxation method for computing the Black-Scholes implied volatility," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1245-1269.
    3. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    4. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    5. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    6. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    8. Dan Stefanica & Radoš Radoičić, 2016. "A sharp approximation for ATM-forward option prices and implied volatilites," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-24, March.
    9. Nappo, Giovanna & Marchetti, Fabio Massimo & Vagnani, Gianluca, 2023. "Traders’ heterogeneous beliefs about stock volatility and the implied volatility skew in financial options markets," Finance Research Letters, Elsevier, vol. 53(C).
    10. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    11. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    12. Yang, Seungho & Oh, Gabjin, 2020. "A Bayesian estimation of exponential Lévy models for implied volatility smile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    13. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    14. Ivan Matić & Radoš Radoičić & Dan Stefanica, 2017. "Pólya-based approximation for the ATM-forward implied volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-15, June.
    15. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    16. Sukhomlin, Nikolay & Santana Jiménez, Lisette Josefina, 2010. "Problema de calibración de mercado y estructura implícita del modelo de bonos de Black-Cox = Market Calibration Problem and the Implied Structure of the Black-Cox Bond Model," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 10(1), pages 73-98, December.
    17. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, August.
    18. Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
    19. Michele Mininni & Giuseppe Orlando & Giovanni Taglialatela, 2021. "Challenges in approximating the Black and Scholes call formula with hyperbolic tangents," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 73-100, June.
    20. repec:hum:wpaper:sfb649dp2005-022 is not listed on IDEAS
    21. Noshaba Zulfiqar & Saqib Gulzar, 2021. "Implied volatility estimation of bitcoin options and the stylized facts of option pricing," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:94:y:2021:i:3:d:10.1007_s00186-021-00763-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.