IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v90y2019i2d10.1007_s00186-019-00668-8.html
   My bibliography  Save this article

Worst-case portfolio optimization in discrete time

Author

Listed:
  • Lihua Chen

    (University of Kaiserslautern)

  • Ralf Korn

    (University of Kaiserslautern
    Fraunhofer ITWM)

Abstract

We consider discrete-time portfolio problems of an investor when taking the possibility of market crashes into account. In the case of the logarithmic utility function, we construct the worst-case optimal portfolio strategy by an indifference principle. Then, we extend the setting to general utility functions and derive the worst-case optimal portfolio processes via the characterization by a dynamic programming equation. Furthermore, we numerically examine the convergence behavior of the discrete-time worst-case optimal portfolio processes for the choice of popular utility functions when the time between two possible price changes tends to zero.

Suggested Citation

  • Lihua Chen & Ralf Korn, 2019. "Worst-case portfolio optimization in discrete time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(2), pages 197-227, October.
  • Handle: RePEc:spr:mathme:v:90:y:2019:i:2:d:10.1007_s00186-019-00668-8
    DOI: 10.1007/s00186-019-00668-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-019-00668-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-019-00668-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Ralf Korn & Olaf Menkens, 2005. "Worst-Case Scenario Portfolio Optimization: a New Stochastic Control Approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(1), pages 123-140, September.
    3. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    4. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    5. Korn, Ralf, 2005. "Worst-case scenario investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 1-11, February.
    6. Ralf Korn & Paul Wilmott, 2002. "Optimal Portfolios Under The Threat Of A Crash," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 171-187.
    7. Ralf Korn, 1997. "Optimal Portfolios:Stochastic Models for Optimal Investment and Risk Management in Continuous Time," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 3548, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belak, Christoph & Christensen, Sören & Menkens, Olaf, 2014. "Worst-case optimal investment with a random number of crashes," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 140-148.
    2. A Chunxiang & Shao Yi, 2018. "Worst-Case Investment Strategy with Delay," Journal of Systems Science and Information, De Gruyter, vol. 6(1), pages 35-57, February.
    3. Ralf Korn & Elisabeth Leoff, 2019. "Multi-Asset Worst-Case Optimal Portfolios," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    4. Ralf Korn, 2008. "Optimal portfolios: new variations of an old theme," Computational Management Science, Springer, vol. 5(4), pages 289-304, October.
    5. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    6. Engler, Tina & Korn, Ralf, 2014. "Worst-case portfolio optimization under stochastic interest rate risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(4), pages 469-488.
    7. Tina Engler & Ralf Korn, 2014. "Worst-Case Portfolio Optimization under Stochastic Interest Rate Risk," Risks, MDPI, vol. 2(4), pages 1-20, December.
    8. Baltas, I. & Dopierala, L. & Kolodziejczyk, K. & Szczepański, M. & Weber, G.-W. & Yannacopoulos, A.N., 2022. "Optimal management of defined contribution pension funds under the effect of inflation, mortality and uncertainty," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1162-1174.
    9. Sascha Desmettre & Sebastian Merkel & Annalena Mickel & Alexander Steinicke, 2023. "Worst-Case Optimal Investment in Incomplete Markets," Papers 2311.10021, arXiv.org.
    10. Christoph Belak & Sören Christensen & Olaf Menkens, 2016. "Worst-Case Portfolio Optimization In A Market With Bubbles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-36, March.
    11. Frank Thomas Seifried, 2010. "Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 559-579, August.
    12. Xiang Lin & Chunhong Zhang & Tak Siu, 2012. "Stochastic differential portfolio games for an insurer in a jump-diffusion risk process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(1), pages 83-100, February.
    13. Andreas Fagereng & Luigi Guiso & Davide Malacrino & Luigi Pistaferri, 2020. "Heterogeneity and Persistence in Returns to Wealth," Econometrica, Econometric Society, vol. 88(1), pages 115-170, January.
    14. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    15. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    16. Letendre, Marc-Andre & Smith, Gregor W., 2001. "Precautionary saving and portfolio allocation: DP by GMM," Journal of Monetary Economics, Elsevier, vol. 48(1), pages 197-215, August.
    17. Berkelaar, Arjan & Kouwenberg, Roy, 2003. "Retirement saving with contribution payments and labor income as a benchmark for investments," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1069-1097, April.
    18. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    19. Robert Östling & Erik Lindqvist & David Cesarini & Joseph Briggs, 2016. "Wealth, Portfolio Allocations, and Risk Preference," 2016 Meeting Papers 1089, Society for Economic Dynamics.
    20. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:90:y:2019:i:2:d:10.1007_s00186-019-00668-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.