IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v88y2018i3d10.1007_s00186-018-0639-z.html
   My bibliography  Save this article

A set optimization approach to zero-sum matrix games with multi-dimensional payoffs

Author

Listed:
  • Andreas H. Hamel

    (Free University Bozen-Bolzano)

  • Andreas Löhne

    (Friedrich Schiller University)

Abstract

A new solution concept for two-player zero-sum matrix games with multi-dimensional payoffs is introduced. It is based on extensions of the vector order in $$\mathbb {R}^d$$ R d to order relations in the power set of $$\mathbb {R}^d$$ R d , so-called set relations, and strictly motivated by the interpretation of the payoff as multi-dimensional loss for one and gain for the other player. The new concept provides coherent worst case estimates for games with multi-dimensional payoffs. It is shown that–in contrast to games with one-dimensional payoffs–the corresponding strategies are different from equilibrium strategies for games with multi-dimensional payoffs. The two concepts are combined into new equilibrium notions for which existence theorems are given. Relationships of the new concepts to existing ones such as Shapley and vector equilibria, vector minimax and maximin solutions as well as Pareto optimal security strategies are clarified.

Suggested Citation

  • Andreas H. Hamel & Andreas Löhne, 2018. "A set optimization approach to zero-sum matrix games with multi-dimensional payoffs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 369-397, December.
  • Handle: RePEc:spr:mathme:v:88:y:2018:i:3:d:10.1007_s00186-018-0639-z
    DOI: 10.1007/s00186-018-0639-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-018-0639-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-018-0639-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F.R. Fernández & J. Puerto & L. Monroy, 1998. "Two-person non-zero-sum gamesas multicriteria goal games," Annals of Operations Research, Springer, vol. 84(0), pages 195-208, December.
    2. Giuseppe De Marco & Jacqueline Morgan, 2007. "A Refinement Concept For Equilibria In Multicriteria Games Via Stable Scalarizations," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 169-181.
    3. Zhao, Jingang, 1991. "The Equilibria of a Multiple Object Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(2), pages 171-182.
    4. Tamaki Tanaka, 2000. "Vector-Valued Minimax Theorems In Multicriteria Games," World Scientific Book Chapters, in: Yong Shi & Milan Zeleny (ed.), New Frontiers Of Decision Making For The Information Technology Era, chapter 5, pages 75-99, World Scientific Publishing Co. Pte. Ltd..
    5. Efe A. Ok & Pietro Ortoleva & Gil Riella, 2012. "Incomplete Preferences Under Uncertainty: Indecisiveness in Beliefs versus Tastes," Econometrica, Econometric Society, vol. 80(4), pages 1791-1808, July.
    6. Wade D. Cook, 1976. "Zero‐sum games with multiple goals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(4), pages 615-621, December.
    7. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    8. Park, Jaeok, 2015. "Potential games with incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 58-66.
    9. Sophie Bade, 2005. "Nash equilibrium in games with incomplete preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 309-332, August.
    10. F. R. Fernández & L. Monroy & J. Puerto, 1998. "Multicriteria Goal Games," Journal of Optimization Theory and Applications, Springer, vol. 99(2), pages 403-421, November.
    11. L. S. Shapley & Fred D. Rigby, 1959. "Equilibrium points in games with vector payoffs," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(1), pages 57-61, March.
    12. ZHAO, Jingang, 1991. "The equilibria of a multiple objective game," LIDAM Reprints CORE 987, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeok Park, 2019. "Decision Making and Games with Vector Outcomes," Working papers 2019rwp-146, Yonsei University, Yonsei Economics Research Institute.
    2. Kuntal Som & V. Vetrivel, 2021. "On robustness for set-valued optimization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 905-925, April.
    3. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juho Kokkala & Kimmo Berg & Kai Virtanen & Jirka Poropudas, 2019. "Rationalizable strategies in games with incomplete preferences," Theory and Decision, Springer, vol. 86(2), pages 185-204, March.
    2. Yasuo Sasaki, 2019. "Rationalizability in multicriteria games," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 673-685, June.
    3. Sasaki, Yasuo, 2022. "Unawareness of decision criteria in multicriteria games," Mathematical Social Sciences, Elsevier, vol. 119(C), pages 31-40.
    4. Jaeok Park, 2019. "Decision Making and Games with Vector Outcomes," Working papers 2019rwp-146, Yonsei University, Yonsei Economics Research Institute.
    5. Monica Milasi & Domenico Scopelliti, 2021. "A Variational Approach to the Maximization of Preferences Without Numerical Representation," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 879-893, September.
    6. A. Zapata & A. M. Mármol & L. Monroy & M. A. Caraballo, 2019. "A Maxmin Approach for the Equilibria of Vector-Valued Games," Group Decision and Negotiation, Springer, vol. 28(2), pages 415-432, April.
    7. Kokkala, Juho & Poropudas, Jirka & Virtanen, Kai, 2015. "Rationalizable Strategies in Games With Incomplete Preferences," MPRA Paper 68331, University Library of Munich, Germany.
    8. M. Quant & P. Borm & G. Fiestras-Janeiro & F. Megen, 2009. "On Properness and Protectiveness in Two-Person Multicriteria Games," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 499-512, March.
    9. Amparo M. Mármol & Luisa Monroy & M. Ángeles Caraballo & Asunción Zapata, 2017. "Equilibria with vector-valued utilities and preference information. The analysis of a mixed duopoly," Theory and Decision, Springer, vol. 83(3), pages 365-383, October.
    10. Gorno, Leandro & Rivello, Alessandro T., 2023. "A maximum theorem for incomplete preferences," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    11. Özgür Evren, 2012. "Scalarization Methods and Expected Multi-Utility Representations," Working Papers w0174, Center for Economic and Financial Research (CEFIR).
    12. De Magistris, Enrico, 2024. "Incomplete preferences or incomplete information? On Rationalizability in games with private values," Games and Economic Behavior, Elsevier, vol. 144(C), pages 126-140.
    13. Evren, Özgür, 2014. "Scalarization methods and expected multi-utility representations," Journal of Economic Theory, Elsevier, vol. 151(C), pages 30-63.
    14. Zachary Feinstein & Birgit Rudloff, 2021. "Characterizing and Computing the Set of Nash Equilibria via Vector Optimization," Papers 2109.14932, arXiv.org, revised Dec 2022.
    15. Wang, Lei & Zhao, Jingang, 2024. "The core in an N-firm dynamic Cournot oligopoly," Mathematical Social Sciences, Elsevier, vol. 129(C), pages 20-26.
    16. Aymeric Lardon, 2019. "On the coalitional stability of monopoly power in differentiated Bertrand and Cournot oligopolies," Theory and Decision, Springer, vol. 87(4), pages 421-449, November.
    17. Eric Howe & Jingang Zhao, 2004. "Merger Incentives and Inverse Matrices from Bertrand Competition," Econometric Society 2004 North American Summer Meetings 586, Econometric Society.
    18. Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
    19. Naouel Yousfi-Halimi & Mohammed Said Radjef & Hachem Slimani, 2018. "Refinement of pure Pareto Nash equilibria in finite multicriteria games using preference relations," Annals of Operations Research, Springer, vol. 267(1), pages 607-628, August.
    20. Marek Hudik, 0. "Equilibrium as compatibility of plans," Theory and Decision, Springer, vol. 0, pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:88:y:2018:i:3:d:10.1007_s00186-018-0639-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.