IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v84y2016i3d10.1007_s00186-016-0552-2.html
   My bibliography  Save this article

The proper relaxation and the proper gap of the skiving stock problem

Author

Listed:
  • John Martinovic

    (Technical University of Dresden)

  • Guntram Scheithauer

    (Technical University of Dresden)

Abstract

We consider the 1D skiving stock problem (SSP) which is strongly related to the dual bin packing problem: find the maximum number of products with minimum length L that can be constructed by connecting a given supply of $$ m \in {\mathbb {N}} $$ m ∈ N smaller item lengths $$ l_1,\ldots ,l_m $$ l 1 , … , l m with availabilities $$ b_1,\ldots , b_m $$ b 1 , … , b m . For this NP-hard optimization problem, we focus on the proper relaxation and introduce a modeling approach based on graph theory. Additionally, we investigate the quality of the proper gap, i.e., the difference between the optimal objective values of the proper relaxation and the SSP itself. As an introductorily motivation, we prove that the SSP does not possess the integer round down property (IRDP) with respect to the proper relaxation. The main contribution of this paper is given by a construction principle for an infinite number of non-equivalent non-proper-IRDP instances and an enumerative approach that leads to the currently largest known (proper) gap.

Suggested Citation

  • John Martinovic & Guntram Scheithauer, 2016. "The proper relaxation and the proper gap of the skiving stock problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 527-548, December.
  • Handle: RePEc:spr:mathme:v:84:y:2016:i:3:d:10.1007_s00186-016-0552-2
    DOI: 10.1007/s00186-016-0552-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-016-0552-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-016-0552-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valerio de Carvalho, J. M., 2002. "LP models for bin packing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 253-273, September.
    2. WOLSEY, Laurence A., 1977. "Valid inequalities, covering problems and discrete dynamic programs," LIDAM Reprints CORE 302, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Csirik, J. & Frenk, J.B.G. & Galambos, G. & Rinnooy Kan, A.H.G., 1991. "Probabilistic analysis of algorithms for dual bin packing problems," Econometric Institute Research Papers 11733, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    5. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    6. Nitsche, Christoph & Scheithauer, Guntram & Terno, Johannes, 1999. "Tighter relaxations for the cutting stock problem," European Journal of Operational Research, Elsevier, vol. 112(3), pages 654-663, February.
    7. Peeters, Marc & Degraeve, Zeger, 2006. "Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 416-439, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Vadim M. Kartak & Artem V. Ripatti, 2019. "Large proper gaps in bin packing and dual bin packing problems," Journal of Global Optimization, Springer, vol. 74(3), pages 467-476, July.
    4. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vadim M. Kartak & Artem V. Ripatti, 2019. "Large proper gaps in bin packing and dual bin packing problems," Journal of Global Optimization, Springer, vol. 74(3), pages 467-476, July.
    2. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    3. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.
    4. Martinovic, J. & Scheithauer, G., 2016. "Integer linear programming models for the skiving stock problem," European Journal of Operational Research, Elsevier, vol. 251(2), pages 356-368.
    5. John Martinovic & Guntram Scheithauer, 2018. "Combinatorial investigations on the maximum gap for skiving stock instances of the divisible case," Annals of Operations Research, Springer, vol. 271(2), pages 811-829, December.
    6. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    7. Belov, G. & Scheithauer, G., 2006. "A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting," European Journal of Operational Research, Elsevier, vol. 171(1), pages 85-106, May.
    8. Martinovic, J. & Scheithauer, G. & Valério de Carvalho, J.M., 2018. "A comparative study of the arcflow model and the one-cut model for one-dimensional cutting stock problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 458-471.
    9. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    10. Kramer, Arthur & Dell’Amico, Mauro & Iori, Manuel, 2019. "Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines," European Journal of Operational Research, Elsevier, vol. 275(1), pages 67-79.
    11. John Martinovic, 2022. "A note on the integrality gap of cutting and skiving stock instances," 4OR, Springer, vol. 20(1), pages 85-104, March.
    12. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.
    13. Kelly Cristina Poldi & Silvio Alexandre Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    14. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    15. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    16. Krzysztof C. Kiwiel, 2010. "An Inexact Bundle Approach to Cutting-Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 131-143, February.
    17. Mateus Martin & Horacio Hideki Yanasse & Luiz Leduíno Salles-Neto, 2022. "Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 557-582, August.
    18. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    19. Pedro Rochavetz Lara Andrade & Silvio Alexandre Araujo & Adriana Cristina Cherri & Felipe Kesrouani Lemos, 2023. "The cutting stock problem applied to the hardening process in an automotive spring factory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 637-664, June.
    20. de Gelder, E.R. & Wagelmans, A.P.M., 2007. "The two-dimensional cutting stock problem within the roller blind production process," Econometric Institute Research Papers EI 2007-47, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:84:y:2016:i:3:d:10.1007_s00186-016-0552-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.