IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v84y2016i3d10.1007_s00186-016-0550-4.html
   My bibliography  Save this article

Continuous-time Markov decision processes with risk-sensitive finite-horizon cost criterion

Author

Listed:
  • Qingda Wei

    (Huaqiao University)

Abstract

This paper studies continuous-time Markov decision processes with a denumerable state space, a Borel action space, bounded cost rates and possibly unbounded transition rates under the risk-sensitive finite-horizon cost criterion. We give the suitable optimality conditions and establish the Feynman–Kac formula, via which the existence and uniqueness of the solution to the optimality equation and the existence of an optimal deterministic Markov policy are obtained. Moreover, employing a technique of the finite approximation and the optimality equation, we present an iteration method to compute approximately the optimal value and an optimal policy, and also give the corresponding error estimations. Finally, a controlled birth and death system is used to illustrate the main results.

Suggested Citation

  • Qingda Wei, 2016. "Continuous-time Markov decision processes with risk-sensitive finite-horizon cost criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 461-487, December.
  • Handle: RePEc:spr:mathme:v:84:y:2016:i:3:d:10.1007_s00186-016-0550-4
    DOI: 10.1007/s00186-016-0550-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-016-0550-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-016-0550-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Confortola, Fulvia & Fuhrman, Marco, 2014. "Backward stochastic differential equations associated to jump Markov processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 289-316.
    2. van Dijk, Nico M., 1988. "On the finite horizon Bellman equation for controlled Markov jump models with unbounded characteristics: existence and approximation," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 141-157, April.
    3. Guo, Xianping & Zhang, Wenzhao, 2014. "Convergence of controlled models and finite-state approximation for discounted continuous-time Markov decision processes with constraints," European Journal of Operational Research, Elsevier, vol. 238(2), pages 486-496.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Qingda, 2019. "Nonzero-sum risk-sensitive finite-horizon continuous-time stochastic games," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 96-104.
    2. Subrata Golui & Chandan Pal & Subhamay Saha, 2022. "Continuous-Time Zero-Sum Games for Markov Decision Processes with Discounted Risk-Sensitive Cost Criterion," Dynamic Games and Applications, Springer, vol. 12(2), pages 485-512, June.
    3. Xin Guo & Qiuli Liu & Yi Zhang, 2019. "Finite horizon risk-sensitive continuous-time Markov decision processes with unbounded transition and cost rates," 4OR, Springer, vol. 17(4), pages 427-442, December.
    4. Subrata Golui & Chandan Pal, 2022. "Risk-sensitive discounted cost criterion for continuous-time Markov decision processes on a general state space," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(2), pages 219-247, April.
    5. Qingda Wei & Xian Chen, 2023. "Continuous-Time Markov Decision Processes Under the Risk-Sensitive First Passage Discounted Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 309-333, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingda Wei, 2017. "Finite approximation for finite-horizon continuous-time Markov decision processes," 4OR, Springer, vol. 15(1), pages 67-84, March.
    2. Bandini, Elena & Fuhrman, Marco, 2017. "Constrained BSDEs representation of the value function in optimal control of pure jump Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1441-1474.
    3. Sennewald, Ken, 2005. "Controlled Stochastic Differential Equations under Poisson Uncertainty and with Unbounded Utility," Dresden Discussion Paper Series in Economics 03/05, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    4. Tomás Prieto-Rumeau & José Lorenzo, 2015. "Approximation of zero-sum continuous-time Markov games under the discounted payoff criterion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 799-836, October.
    5. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org, revised Nov 2019.
    6. Ping Cao & Jingui Xie, 2016. "Optimal control of a multiclass queueing system when customers can change types," Queueing Systems: Theory and Applications, Springer, vol. 82(3), pages 285-313, April.
    7. Sennewald, Ken, 2007. "Controlled stochastic differential equations under Poisson uncertainty and with unbounded utility," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1106-1131, April.
    8. Dijk, N.M. van, 1989. "Analytic error bounds for approximations of queueing networks with an application to alternate routing," Serie Research Memoranda 0006, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:84:y:2016:i:3:d:10.1007_s00186-016-0550-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.