IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v76y2012i2p161-187.html
   My bibliography  Save this article

The multiple-partners assignment game with heterogeneous sales and multi-unit demands: competitive equilibria

Author

Listed:
  • Daniel Jaume
  • Jordi Massó
  • Alejandro Neme

Abstract

A multiple-partners assignment game with heterogeneous sales and multi-unit demands consists of a set of sellers that own a given number of indivisible units of potentially many different goods and a set of buyers who value those units and want to buy at most an exogenously fixed number of units. We define a competitive equilibrium for this generalized assignment game and prove its existence by using only linear programming. In particular, we show how to compute equilibrium price vectors from the solutions of the dual linear program associated to the primal linear program defined to find optimal assignments. Using only linear programming tools, we also show (i) that the set of competitive equilibria (pairs of price vectors and assignments) has a Cartesian product structure: each equilibrium price vector is part of a competitive equilibrium with all optimal assignments, and vice versa; (ii) that the set of (restricted) equilibrium price vectors has a natural lattice structure; and (iii) how this structure is translated into the set of agents’ utilities that are attainable at equilibrium. Copyright Springer-Verlag 2012

Suggested Citation

  • Daniel Jaume & Jordi Massó & Alejandro Neme, 2012. "The multiple-partners assignment game with heterogeneous sales and multi-unit demands: competitive equilibria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 161-187, October.
  • Handle: RePEc:spr:mathme:v:76:y:2012:i:2:p:161-187
    DOI: 10.1007/s00186-012-0395-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-012-0395-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-012-0395-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Camina, Ester, 2006. "A generalized assignment game," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 152-161, September.
    2. Roth,Alvin E. & Sotomayor,Marilda A. Oliveira, 1992. "Two-Sided Matching," Cambridge Books, Cambridge University Press, number 9780521437882, October.
    3. Paul Milgrom, 2009. "Assignment Messages and Exchanges," American Economic Journal: Microeconomics, American Economic Association, vol. 1(2), pages 95-113, August.
    4. Sotomayor, Marilda, 2007. "Connecting the cooperative and competitive structures of the multiple-partners assignment game," Journal of Economic Theory, Elsevier, vol. 134(1), pages 155-174, May.
    5. Marilda Sotomayor, 1992. "The Multiple Partners Game," Palgrave Macmillan Books, in: Mukul Majumdar (ed.), Equilibrium and Dynamics, chapter 17, pages 322-354, Palgrave Macmillan.
    6. Marilda Sotomayor, 1999. "The lattice structure of the set of stable outcomes of the multiple partners assignment game," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 567-583.
    7. Marilda Sotomayor, 2003. "A labor market with heterogeneous firms and workers," International Journal of Game Theory, Springer;Game Theory Society, vol. 31(2), pages 269-283.
    8. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    9. Bikhchandani, Sushil & Ostroy, Joseph M., 2002. "The Package Assignment Model," Journal of Economic Theory, Elsevier, vol. 107(2), pages 377-406, December.
    10. Sotomayor, Marilda, 2003. "Some further remark on the core structure of the assignment game," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 261-265, December.
    11. Fagebaume, Alexis & Gale, David & Sotomayor, Marilda, 2010. "A note on the multiple partners assignment game," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 388-392, July.
    12. Donald M. Topkis, 1978. "Minimizing a Submodular Function on a Lattice," Operations Research, INFORMS, vol. 26(2), pages 305-321, April.
    13. Leonard, Herman B, 1983. "Elicitation of Honest Preferences for the Assignment of Individuals to Positions," Journal of Political Economy, University of Chicago Press, vol. 91(3), pages 461-479, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    2. Massó, Jordi & Neme, Alejandro, 2014. "On cooperative solutions of a generalized assignment game: Limit theorems to the set of competitive equilibria," Journal of Economic Theory, Elsevier, vol. 154(C), pages 187-215.
    3. Hatfield, John William & Kominers, Scott Duke, 2017. "Contract design and stability in many-to-many matching," Games and Economic Behavior, Elsevier, vol. 101(C), pages 78-97.
    4. Arribas, I. & Urbano, A., 2018. "Identification of efficient equilibria in multiproduct trading with indivisibilities and non-monotonicity," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 83-94.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massó, Jordi & Neme, Alejandro, 2014. "On cooperative solutions of a generalized assignment game: Limit theorems to the set of competitive equilibria," Journal of Economic Theory, Elsevier, vol. 154(C), pages 187-215.
    2. Jeremy T. Fox, 2018. "Estimating matching games with transfers," Quantitative Economics, Econometric Society, vol. 9(1), pages 1-38, March.
    3. Domènech, Gerard & Núñez, Marina, 2022. "Axioms for the optimal stable rules and fair-division rules in a multiple-partners job market," Games and Economic Behavior, Elsevier, vol. 136(C), pages 469-484.
    4. Jeremy T. Fox, 2010. "Identification in matching games," Quantitative Economics, Econometric Society, vol. 1(2), pages 203-254, November.
    5. David Pérez-Castrillo & Marilda Sotomayor, 2017. "On the manipulability of competitive equilibrium rules in many-to-many buyer–seller markets," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1137-1161, November.
    6. Gerard Domènech Gironell & Marina Núñez Oliva, 2022. "Axioms for the optimal stable rules and fair-division rules in a multiple-partners job market," UB School of Economics Working Papers 2022/419, University of Barcelona School of Economics.
    7. R. Pablo Arribillaga & Jordi Massó & Alejandro Neme, 2014. "On the Structure of Cooperative and Competitive Solutions for a Generalized Assignment Game," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-20, April.
    8. Yukihiko Funaki & Harold Houba & Evgenia Motchenkova, 2020. "Market power in bilateral oligopoly markets with non-expandable infrastructures," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(2), pages 525-546, June.
    9. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    10. Sotomayor, Marilda, 2007. "Connecting the cooperative and competitive structures of the multiple-partners assignment game," Journal of Economic Theory, Elsevier, vol. 134(1), pages 155-174, May.
    11. Marilda Sotomayor, 2008. "Adjusting Prices in the Many-to-many Assignment Game," Working Papers 2008-13, Brown University, Department of Economics.
    12. Miralles, Antonio & Pycia, Marek, 2021. "Foundations of pseudomarkets: Walrasian equilibria for discrete resources," Journal of Economic Theory, Elsevier, vol. 196(C).
    13. Eric Bahel & Christian Trudeau, 2018. "Stable cost sharing in production allocation games," Review of Economic Design, Springer;Society for Economic Design, vol. 22(1), pages 25-53, June.
    14. Biró, Péter & Kern, Walter & Paulusma, Daniël & Wojuteczky, Péter, 2018. "The stable fixtures problem with payments," Games and Economic Behavior, Elsevier, vol. 108(C), pages 245-268.
    15. Nikhil Agarwal, 2015. "An Empirical Model of the Medical Match," American Economic Review, American Economic Association, vol. 105(7), pages 1939-1978, July.
    16. Marilda Sotomayor, 2013. "Labor Time Shared In The Assignment Game Generating New Cooperative And Competitive Structures," Working Papers, Department of Economics 2013_02, University of São Paulo (FEA-USP).
    17. Fagebaume, Alexis & Gale, David & Sotomayor, Marilda, 2010. "A note on the multiple partners assignment game," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 388-392, July.
    18. Pérez-Castrillo, David & Sotomayor, Marilda, 2019. "Comparative statics in the multiple-partners assignment game," Games and Economic Behavior, Elsevier, vol. 114(C), pages 177-192.
    19. Jawad Abrache & Teodor Crainic & Michel Gendreau & Monia Rekik, 2007. "Combinatorial auctions," Annals of Operations Research, Springer, vol. 153(1), pages 131-164, September.
    20. Inés Macho-Stadler & David Pérez-Castrillo, 2021. "Agency theory meets matching theory," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 1-33, March.

    More about this item

    Keywords

    Matching; Assignment game; Indivisible goods; Competitive equilibrium; Lattice;
    All these keywords.

    JEL classification:

    • C78 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Bargaining Theory; Matching Theory
    • D78 - Microeconomics - - Analysis of Collective Decision-Making - - - Positive Analysis of Policy Formulation and Implementation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:76:y:2012:i:2:p:161-187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.