IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v68y2008i1p181-205.html
   My bibliography  Save this article

Dynamic mean-variance problem with constrained risk control for the insurers

Author

Listed:
  • Lihua Bai
  • Huayue Zhang

Abstract

In this paper, we study optimal reinsurance/new business and investment (no-shorting) strategy for the mean-variance problem in two risk models: a classical risk model and a diffusion model. The problem is firstly reduced to a stochastic linear-quadratic (LQ) control problem with constraints. Then, the efficient frontiers and efficient strategies are derived explicitly by a verification theorem with the viscosity solutions of Hamilton–Jacobi–Bellman (HJB) equations, which is different from that given in Zhou et al. (SIAM J Control Optim 35:243–253, 1997). Furthermore, by comparisons, we find that they are identical under the two risk models. Copyright Springer-Verlag 2008

Suggested Citation

  • Lihua Bai & Huayue Zhang, 2008. "Dynamic mean-variance problem with constrained risk control for the insurers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 181-205, August.
  • Handle: RePEc:spr:mathme:v:68:y:2008:i:1:p:181-205
    DOI: 10.1007/s00186-007-0195-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-007-0195-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-007-0195-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    2. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    3. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    4. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Wang, Nan, 2007. "Optimal investment for an insurer with exponential utility preference," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 77-84, January.
    7. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    8. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    2. Łukasz Delong & Russell Gerrard, 2007. "Mean-variance portfolio selection for a non-life insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 339-367, October.
    3. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    4. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    5. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    6. Zhou, Jieming & Yang, Xiangqun & Guo, Junyi, 2017. "Portfolio selection and risk control for an insurer in the Lévy market under mean–variance criterion," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 139-149.
    7. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    8. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    9. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    10. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    11. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    12. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    13. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    14. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    15. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    16. Li, Yongwu & Li, Zhongfei, 2013. "Optimal time-consistent investment and reinsurance strategies for mean–variance insurers with state dependent risk aversion," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 86-97.
    17. Junna Bi & Qingbin Meng & Yongji Zhang, 2014. "Dynamic mean-variance and optimal reinsurance problems under the no-bankruptcy constraint for an insurer," Annals of Operations Research, Springer, vol. 212(1), pages 43-59, January.
    18. Zhao, Qian & Wang, Rongming & Wei, Jiaqin, 2016. "Exponential utility maximization for an insurer with time-inconsistent preferences," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 89-104.
    19. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    20. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:68:y:2008:i:1:p:181-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.