IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v53y2013i1p1-13.html
   My bibliography  Save this article

An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments

Author

Listed:
  • Badaoui, Mohamed
  • Fernández, Begoña

Abstract

In this paper, we study an optimal investment problem of an insurance company with a Cramér–Lundberg risk process and investments portfolio consisting of a risky asset with stochastic volatility and a money market. The asset prices are affected by a correlated economic factor, modeled as diffusion process. We prove a verification theorem, in order to show that any solution to the Hamilton–Jacobi–Bellman equation solves the optimization problem. When the insurer preferences are exponential, we prove the existence of a smooth solution, and we give an explicit form of the optimal strategy, also numerical results are presented in the case of the Scott model. Finally we use the optimal strategy to get an estimate of the ruin probability in finite horizon.

Suggested Citation

  • Badaoui, Mohamed & Fernández, Begoña, 2013. "An optimal investment strategy with maximal risk aversion and its ruin probability in the presence of stochastic volatility on investments," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 1-13.
  • Handle: RePEc:eee:insuma:v:53:y:2013:i:1:p:1-13
    DOI: 10.1016/j.insmatheco.2013.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668713000589
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2013.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guerra, Manuel & de Lourdes Centeno, Maria, 2008. "Optimal reinsurance policy: The adjustment coefficient and the expected utility criteria," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 529-539, April.
    2. Sid Browne, 1995. "Optimal Investment Policies for a Firm With a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Mathematics of Operations Research, INFORMS, vol. 20(4), pages 937-958, November.
    3. Browne, S., 1995. "Optimal Investment Policies for a Firm with a Random Risk Process: Exponential Utility and Minimizing the Probability of Ruin," Papers 95-08, Columbia - Graduate School of Business.
    4. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    5. Louis O. Scott, 1997. "Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 413-426, October.
    6. Yang, Hailiang & Zhang, Lihong, 2005. "Optimal investment for insurer with jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 615-634, December.
    7. Wang, Nan, 2007. "Optimal investment for an insurer with exponential utility preference," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 77-84, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    2. Mohamed Badaoui & Begoña Fernández & Anatoliy Swishchuk, 2018. "An Optimal Investment Strategy for Insurers in Incomplete Markets," Risks, MDPI, vol. 6(2), pages 1-23, April.
    3. Koch-Medina, Pablo & Moreno-Bromberg, Santiago & Ravanelli, Claudia & Šikić, Mario, 2021. "Revisiting optimal investment strategies of value-maximizing insurance firms," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 131-151.
    4. Guan, Guohui & Liang, Zongxia & Feng, Jian, 2018. "Time-consistent proportional reinsurance and investment strategies under ambiguous environment," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 122-133.
    5. Flores, Eduardo & de Carvalho, João Vinicius França & Sampaio, Joelson Oliveira, 2021. "Impact of interest rates on the life insurance market development: Cross-country evidence," Research in International Business and Finance, Elsevier, vol. 58(C).
    6. Hiroaki Hata & Kazuhiro Yasuda, 2024. "Expected Power Utility Maximization of Insurers," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(3), pages 543-577, September.
    7. Xu, Lin & Zhang, Liming & Yao, Dingjun, 2017. "Optimal investment and reinsurance for an insurer under Markov-modulated financial market," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 7-19.
    8. Guan, Guohui & Liang, Zongxia, 2014. "Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 105-115.
    9. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Badaoui & Begoña Fernández & Anatoliy Swishchuk, 2018. "An Optimal Investment Strategy for Insurers in Incomplete Markets," Risks, MDPI, vol. 6(2), pages 1-23, April.
    2. Begoña Fernández & Daniel Hernández-Hernández & Ana Meda & Patricia Saavedra, 2008. "An optimal investment strategy with maximal risk aversion and its ruin probability," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 159-179, August.
    3. Li, Zhongfei & Zeng, Yan & Lai, Yongzeng, 2012. "Optimal time-consistent investment and reinsurance strategies for insurers under Heston’s SV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 191-203.
    4. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    5. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    6. Zhou, Qing, 2009. "Optimal investment for an insurer in the Lévy market: The martingale approach," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1602-1607, July.
    7. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    8. Yi, Bo & Li, Zhongfei & Viens, Frederi G. & Zeng, Yan, 2013. "Robust optimal control for an insurer with reinsurance and investment under Heston’s stochastic volatility model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 601-614.
    9. Lihua Bai & Huayue Zhang, 2008. "Dynamic mean-variance problem with constrained risk control for the insurers," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(1), pages 181-205, August.
    10. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    11. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.
    12. Qianqian Zhou & Junyi Guo, 2020. "Optimal Control of Investment for an Insurer in Two Currency Markets," Papers 2006.02857, arXiv.org.
    13. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    14. Łukasz Delong & Russell Gerrard, 2007. "Mean-variance portfolio selection for a non-life insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(2), pages 339-367, October.
    15. Shihao Zhu & Jingtao Shi, 2019. "Optimal Reinsurance and Investment Strategies under Mean-Variance Criteria: Partial and Full Information," Papers 1906.08410, arXiv.org, revised Jun 2020.
    16. Wang, Zengwu & Xia, Jianming & Zhang, Lihong, 2007. "Optimal investment for an insurer: The martingale approach," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 322-334, March.
    17. Yang Shen & Bin Zou, 2021. "Mean-Variance Investment and Risk Control Strategies -- A Time-Consistent Approach via A Forward Auxiliary Process," Papers 2101.03954, arXiv.org.
    18. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    19. Haiying Zhou & Huainian Zhu, 2024. "Optimal Reinsurance and Derivative-Based Investment Decisions for Insurers with Mean-Variance Preference," Mathematics, MDPI, vol. 12(13), pages 1-20, June.
    20. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:53:y:2013:i:1:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.