IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v65y2007i1p115-140.html
   My bibliography  Save this article

On two-stage convex chance constrained problems

Author

Listed:
  • E. Erdoğan
  • G. Iyengar

Abstract

In this paper we develop approximation algorithms for two-stage convex chance constrained problems. Nemirovski and Shapiro (Probab Randomized Methods Des Uncertain 2004) formulated this class of problems and proposed an ellipsoid-like iterative algorithm for the special case where the impact function f (x, h) is bi-affine. We show that this algorithm extends to bi-convex f (x, h) in a fairly straightforward fashion. The complexity of the solution algorithm as well as the quality of its output are functions of the radius r of the largest Euclidean ball that can be inscribed in the polytope defined by a random set of linear inequalities generated by the algorithm (Nemirovski and Shapiro in Probab Randomized Methods Des Uncertain 2004). Since the polytope determining r is random, computing r is difficult. Yet, the solution algorithm requires r as an input. In this paper we provide some guidance for selecting r. We show that the largest value of r is determined by the degree of robust feasibility of the two-stage chance constrained problem—the more robust the problem, the higher one can set the parameter r. Next, we formulate ambiguous two-stage chance constrained problems. In this formulation, the random variables defining the chance constraint are known to have a fixed distribution; however, the decision maker is only able to estimate this distribution to within some error. We construct an algorithm that solves the ambiguous two-stage chance constrained problem when the impact function f (x, h) is bi-affine and the extreme points of a certain “dual” polytope are known explicitly. Copyright Springer-Verlag 2007

Suggested Citation

  • E. Erdoğan & G. Iyengar, 2007. "On two-stage convex chance constrained problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 115-140, February.
  • Handle: RePEc:spr:mathme:v:65:y:2007:i:1:p:115-140
    DOI: 10.1007/s00186-006-0104-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-006-0104-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-006-0104-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    2. Wolfram Wiesemann & Daniel Kuhn & Berç Rustem, 2012. "Multi-resource allocation in stochastic project scheduling," Annals of Operations Research, Springer, vol. 193(1), pages 193-220, March.
    3. Dimitris Bertsimas & Shimrit Shtern & Bradley Sturt, 2023. "A Data-Driven Approach to Multistage Stochastic Linear Optimization," Management Science, INFORMS, vol. 69(1), pages 51-74, January.
    4. Itai Gurvich & James Luedtke & Tolga Tezcan, 2010. "Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach," Management Science, INFORMS, vol. 56(7), pages 1093-1115, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    3. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    4. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    5. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    6. Wang, Chong & Wang, Qi & Xiang, Xi & Zhang, Canrong & Miao, Lixin, 2025. "Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 320(3), pages 593-615.
    7. J. Behnamian & Z. Gharabaghli, 2023. "Multi-objective outpatient scheduling in health centers considering resource constraints and service quality: a robust optimization approach," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-35, March.
    8. Kang, Yan-li & Tian, Jing-Song & Chen, Chen & Zhao, Gui-Yu & Li, Yuan-fu & Wei, Yu, 2021. "Entropy based robust portfolio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    9. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    10. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    11. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    12. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    13. Martijn G. de Jong & Jan-Benedict E. M. Steenkamp & Bernard P. Veldkamp, 2009. "A Model for the Construction of Country-Specific Yet Internationally Comparable Short-Form Marketing Scales," Marketing Science, INFORMS, vol. 28(4), pages 674-689, 07-08.
    14. Sturm, J.F. & Zhang, S., 2001. "On Cones of Nonnegative Quadratic Functions," Discussion Paper 2001-26, Tilburg University, Center for Economic Research.
    15. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    16. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    17. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.
    18. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    19. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    20. Wang, Xiaohan & Chen, Xiqun (Michael) & Xie, Chi & Cheong, Taesu, 2024. "Coordinative dispatching of shared and public transportation under passenger flow outburst," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:65:y:2007:i:1:p:115-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.