IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v58y2003i1p131-139.html
   My bibliography  Save this article

Submodularity of some classes of the combinatorial optimization games

Author

Listed:
  • Yoshio Okamoto

Abstract

Submodularity (or concavity) is considered as an important property in the field of cooperative game theory. In this article, we characterize submodular minimum coloring games and submodular minimum vertex cover games. These characterizations immediately show that it can be decided in polynomial time that the minimum coloring game or the minimum vertex cover game on a given graph is submodular or not. Related to these results, the Shapley values are also investigated. Copyright Springer-Verlag 2003

Suggested Citation

  • Yoshio Okamoto, 2003. "Submodularity of some classes of the combinatorial optimization games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(1), pages 131-139, September.
  • Handle: RePEc:spr:mathme:v:58:y:2003:i:1:p:131-139
    DOI: 10.1007/s001860300284
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860300284
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860300284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Musegaas & P. E. M. Borm & M. Quant, 2016. "Simple and three-valued simple minimum coloring games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 239-258, October.
    2. Sergei Dotsenko & Vladimir Mazalov, 2021. "A Cooperative Network Packing Game with Simple Paths," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
    3. Hamers, H.J.M. & Josune Albizuri, M., 2013. "Graphs Inducing Totally Balanced and Submodular Chinese Postman Games," Discussion Paper 2013-006, Tilburg University, Center for Economic Research.
    4. Hamers, H.J.M. & Josune Albizuri, M., 2013. "Graphs Inducing Totally Balanced and Submodular Chinese Postman Games," Other publications TiSEM b1fbd78c-1207-4d55-8313-2, Tilburg University, School of Economics and Management.
    5. Trine Platz & Herbert Hamers, 2015. "On games arising from multi-depot Chinese postman problems," Annals of Operations Research, Springer, vol. 235(1), pages 675-692, December.
    6. Hamers, H.J.M. & Miquel, S. & Norde, H.W., 2011. "Monotonic Stable Solutions for Minimum Coloring Games," Other publications TiSEM efae8d09-83e6-4fe4-9623-e, Tilburg University, School of Economics and Management.
    7. Thomas Bietenhader & Yoshio Okamoto, 2006. "Core Stability of Minimum Coloring Games," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 418-431, May.
    8. Stefano Moretti & Henk Norde, 2022. "Some new results on generalized additive games," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 87-118, March.
    9. Hamers, Herbert & Horozoglu, Nayat & Norde, Henk & Platz, Trine Tornoe, 2022. "On the properties of weighted minimum colouring games," Other publications TiSEM ee84d5e4-08d7-4154-9521-2, Tilburg University, School of Economics and Management.
    10. Herbert Hamers & Nayat Horozoglu & Henk Norde & Trine Tornøe Platz, 2022. "On the properties of weighted minimum colouring games," Annals of Operations Research, Springer, vol. 318(2), pages 963-983, November.
    11. Hamers, H.J.M. & Miquel, S. & Norde, H.W., 2011. "Monotonic Stable Solutions for Minimum Coloring Games," Discussion Paper 2011-016, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:58:y:2003:i:1:p:131-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.