IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i1d10.1007_s00186-024-00850-7.html
   My bibliography  Save this article

Complexity of the multiobjective minimum weight minimum stretch spanner problem

Author

Listed:
  • Fritz Bökler

    (Osnabrück University)

  • Henning Jasper

    (Osnabrück University)

Abstract

In this paper, we take an in-depth look at the complexity of a hitherto unexplored multiobjective minimum weight minimum stretch spanner problem; or in short multiobjective spanner (MSp) problem. The MSp is a multiobjective generalization of the well-studied minimum t-spanner problem. This multiobjective approach allows to find solutions that offer a viable compromise between cost and utility—a property that is usually neglected in singleobjective optimization. Thus, the MSp can be a powerful modeling tool when it comes to, e.g., the planning of transportation or communication networks. This holds especially in disaster management, where both responsiveness and practicality are crucial. We show that for degree-3 bounded outerplanar instances the MSp is intractable and computing the non-dominated set is BUCO-hard. Additionally, we prove that if $${\textbf{P}} \ne \textbf{NP}$$ P ≠ NP , the set of extreme points cannot be computed in output-polynomial time, for instances with unit costs and arbitrary graphs. Furthermore, we consider the directed versions of the cases above.

Suggested Citation

  • Fritz Bökler & Henning Jasper, 2024. "Complexity of the multiobjective minimum weight minimum stretch spanner problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 65-83, August.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00850-7
    DOI: 10.1007/s00186-024-00850-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-024-00850-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-024-00850-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Delling & Thomas Pajor & Renato F. Werneck, 2015. "Round-Based Public Transit Routing," Transportation Science, INFORMS, vol. 49(3), pages 591-604, August.
    2. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    3. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Henggeler Antunes & Carlos M. Fonseca & Luís Paquete & Michael Stiglmayr, 2024. "Special issue on exact and approximation methods for mixed-integer multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Euler, Ricardo & Maristany de las Casas, Pedro, 2024. "Labeling methods for partially ordered paths," European Journal of Operational Research, Elsevier, vol. 318(1), pages 19-30.
    3. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    4. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    5. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    6. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    7. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    8. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    9. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    10. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    11. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    12. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    13. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    14. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    15. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    16. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    17. Giovanni Musolino & Reza Ahmadian & Junqiang Xia, 2022. "Enhancing pedestrian evacuation routes during flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 1941-1965, July.
    18. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    19. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    20. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00850-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.