IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v100y2024i1d10.1007_s00186-024-00850-7.html
   My bibliography  Save this article

Complexity of the multiobjective minimum weight minimum stretch spanner problem

Author

Listed:
  • Fritz Bökler

    (Osnabrück University)

  • Henning Jasper

    (Osnabrück University)

Abstract

In this paper, we take an in-depth look at the complexity of a hitherto unexplored multiobjective minimum weight minimum stretch spanner problem; or in short multiobjective spanner (MSp) problem. The MSp is a multiobjective generalization of the well-studied minimum t-spanner problem. This multiobjective approach allows to find solutions that offer a viable compromise between cost and utility—a property that is usually neglected in singleobjective optimization. Thus, the MSp can be a powerful modeling tool when it comes to, e.g., the planning of transportation or communication networks. This holds especially in disaster management, where both responsiveness and practicality are crucial. We show that for degree-3 bounded outerplanar instances the MSp is intractable and computing the non-dominated set is BUCO-hard. Additionally, we prove that if $${\textbf{P}} \ne \textbf{NP}$$ P ≠ NP , the set of extreme points cannot be computed in output-polynomial time, for instances with unit costs and arbitrary graphs. Furthermore, we consider the directed versions of the cases above.

Suggested Citation

  • Fritz Bökler & Henning Jasper, 2024. "Complexity of the multiobjective minimum weight minimum stretch spanner problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 65-83, August.
  • Handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00850-7
    DOI: 10.1007/s00186-024-00850-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-024-00850-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-024-00850-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Delling & Thomas Pajor & Renato F. Werneck, 2015. "Round-Based Public Transit Routing," Transportation Science, INFORMS, vol. 49(3), pages 591-604, August.
    2. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    3. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Henggeler Antunes & Carlos M. Fonseca & Luís Paquete & Michael Stiglmayr, 2024. "Special issue on exact and approximation methods for mixed-integer multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Euler, Ricardo & Maristany de las Casas, Pedro, 2024. "Labeling methods for partially ordered paths," European Journal of Operational Research, Elsevier, vol. 318(1), pages 19-30.
    3. Souza, Juliano Silva & Lim-Apo, Flávio Araújo & Varella, Leonardo & Coelho, Antônio Sérgio & Souza, João Carlos, 2022. "Multi-period optimization model for planning people allocation in shelters and distributing aid with special constraints," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    4. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    5. Wu, Weitiao & Lin, Yue & Liu, Ronghui & Jin, Wenzhou, 2022. "The multi-depot electric vehicle scheduling problem with power grid characteristics," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 322-347.
    6. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    7. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2021. "Impacts of real-time information levels in public transport: A large-scale case study using an adaptive passenger path choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 155-182.
    8. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    9. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    10. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    11. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    12. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    13. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    14. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    15. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    16. Khalifa Mohammed Al-Sobai & Shaligram Pokharel & Galal M. Abdella, 2020. "Perspectives on the Capabilities for the Selection of Strategic Projects," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    17. Gabriel Zayas‐Cabán & Emmett J. Lodree & David L. Kaufman, 2020. "Optimal Control of Parallel Queues for Managing Volunteer Convergence," Production and Operations Management, Production and Operations Management Society, vol. 29(10), pages 2268-2288, October.
    18. Manuel V. C. Vieira & Margarida Carvalho, 2023. "Lexicographic optimization for the multi-container loading problem with open dimensions for a shoe manufacturer," 4OR, Springer, vol. 21(3), pages 491-512, September.
    19. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    20. Petr Iakovlevitch Ekel & Matheus Pereira Libório & Laura Cozzi Ribeiro & Mateus Alberto Dorna de Oliveira Ferreira & Joel Gomes Pereira Junior, 2024. "Multi-Criteria Decision under Uncertainty as Applied to Resource Allocation and Its Computing Implementation," Mathematics, MDPI, vol. 12(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:100:y:2024:i:1:d:10.1007_s00186-024-00850-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.