IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p19-30.html
   My bibliography  Save this article

Labeling methods for partially ordered paths

Author

Listed:
  • Euler, Ricardo
  • Maristany de las Casas, Pedro

Abstract

The landscape of applications and subroutines relying on shortest path computations continues to grow steadily. This growth is driven by the undeniable success of shortest path algorithms in theory and practice. It also introduces new challenges as the models and assessing the optimality of paths become more complicated. Hence, multiple recent publications in the field adapt existing labeling methods in an ad hoc fashion to their specific problem variant without considering the underlying general structure: they always deal with multi-criteria scenarios, and those criteria define different partial orders on the paths. In this paper, we introduce the partial order shortest path problem (POSP), a generalization of the multi-objective shortest path problem (MOSP) and in turn also of the classical shortest path problem. POSP captures the particular structure of many shortest path applications as special cases. In this generality, we study optimality conditions or the lack of them, depending on the objective functions’ properties. Our final contribution is a big lookup table summarizing our findings and providing the reader with an easy way to choose among the most recent multi-criteria shortest path algorithms depending on their problems’ weight structure. Examples range from time-dependent shortest path bottleneck path problems to the electric vehicle shortest path problem with recharging and complex financial weight functions studied in the public transportation community. Our results hold for general digraphs and, therefore, surpass previous generalizations that were limited to acyclic graphs.

Suggested Citation

  • Euler, Ricardo & Maristany de las Casas, Pedro, 2024. "Labeling methods for partially ordered paths," European Journal of Operational Research, Elsevier, vol. 318(1), pages 19-30.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:19-30
    DOI: 10.1016/j.ejor.2024.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perny, Patrice & Spanjaard, Olivier, 2005. "A preference-based approach to spanning trees and shortest paths problems***," European Journal of Operational Research, Elsevier, vol. 162(3), pages 584-601, May.
    2. Carraway, Robert L. & Morin, Thomas L. & Moskowitz, Herbert, 1990. "Generalized dynamic programming for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 44(1), pages 95-104, January.
    3. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    4. Sedeño-noda, Antonio & Colebrook, Marcos, 2019. "A biobjective Dijkstra algorithm," European Journal of Operational Research, Elsevier, vol. 276(1), pages 106-118.
    5. Daniel Delling & Thomas Pajor & Renato F. Werneck, 2015. "Round-Based Public Transit Routing," Transportation Science, INFORMS, vol. 49(3), pages 591-604, August.
    6. Moritz Baum & Julian Dibbelt & Andreas Gemsa & Dorothea Wagner & Tobias Zündorf, 2019. "Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles," Transportation Science, INFORMS, vol. 53(6), pages 1627-1655, November.
    7. Axel Parmentier, 2019. "Algorithms for non-linear and stochastic resource constrained shortest path," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 281-317, April.
    8. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    9. Strehler, Martin & Merting, Sören & Schwan, Christian, 2017. "Energy-efficient shortest routes for electric and hybrid vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 111-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zweers, Bernard G. & van der Mei, Rob D., 2022. "Minimum costs paths in intermodal transportation networks with stochastic travel times and overbookings," European Journal of Operational Research, Elsevier, vol. 300(1), pages 178-188.
    2. Fritz Bökler & Henning Jasper, 2024. "Complexity of the multiobjective minimum weight minimum stretch spanner problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 65-83, August.
    3. Yannick Kergosien & Antoine Giret & Emmanuel Néron & Gaël Sauvanet, 2022. "An Efficient Label-Correcting Algorithm for the Multiobjective Shortest Path Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 76-92, January.
    4. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    5. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    6. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    7. Renaud, Jacques & Boctor, Fayez F., 1998. "An efficient composite heuristic for the symmetric generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 571-584, August.
    8. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    9. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.
    10. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    11. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    12. Abdelaziz, Fouad Ben & Maddah, Bacel & Flamand, Tülay & Azar, Jimmy, 2024. "Store-Wide space planning balancing impulse and convenience," European Journal of Operational Research, Elsevier, vol. 312(1), pages 211-226.
    13. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    14. Brouer, Berit D. & Dirksen, Jakob & Pisinger, David & Plum, Christian E.M. & Vaaben, Bo, 2013. "The Vessel Schedule Recovery Problem (VSRP) – A MIP model for handling disruptions in liner shipping," European Journal of Operational Research, Elsevier, vol. 224(2), pages 362-374.
    15. Steuer, Ralph E. & Utz, Sebastian, 2023. "Non-contour efficient fronts for identifying most preferred portfolios in sustainability investing," European Journal of Operational Research, Elsevier, vol. 306(2), pages 742-753.
    16. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    17. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    18. Junchi Ma & Yuan Zhang & Zongtao Duan & Lei Tang, 2023. "PROLIFIC: Deep Reinforcement Learning for Efficient EV Fleet Scheduling and Charging," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    19. Rebeca Ramirez Acosta & Chathura Wanigasekara & Emilie Frost & Tobias Brandt & Sebastian Lehnhoff & Christof Büskens, 2023. "Integration of Intelligent Neighbourhood Grids to the German Distribution Grid: A Perspective," Energies, MDPI, vol. 16(11), pages 1-16, May.
    20. Thomas Hacardiaux & Christof Defryn & Jean-Sébastien Tancrez & Lotte Verdonck, 2022. "Balancing partner preferences for logistics costs and carbon footprint in a horizontal cooperation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 121-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:19-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.