IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v21y2016i1p101-118.html
   My bibliography  Save this article

Alternative approaches for addressing non-permanence in carbon projects: an application to afforestation and reforestation under the Clean Development Mechanism

Author

Listed:
  • Christopher Galik
  • Brian Murray
  • Stephen Mitchell
  • Phil Cottle

Abstract

Afforestation and reforestation (A/R) projects generate greenhouse gas (GHG) reduction credits by removing carbon dioxide from the atmosphere through biophysical processes and storing it in terrestrial carbon stocks. One feature of A/R activities is the possibility of non-permanence, in which stored carbon is lost though natural or anthropogenic disturbances. The risk of non-permanence is currently addressed in Clean Development Mechanism (CDM) A/R projects through temporary carbon credits. To evaluate other approaches to address reversals and their implications for policy and investment decisions, we assess the performance of multiple policy and accounting mechanisms using a forest ecosystem simulation model parameterized with observational data on natural disturbances (e.g., fire and wind). Our analysis finds that location, project scale, and system dynamics all affect the performance of different risk mechanisms. We also find that there is power in risk diversification. Risk management mechanisms likewise exhibit a range of features and tradeoffs among risk conservatism, economic returns, and other factors. Rather than relying on a single approach, a menu-based system could be developed to provide entities the flexibility to choose among approaches, but care must be taken to avoid issues of adverse selection. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Christopher Galik & Brian Murray & Stephen Mitchell & Phil Cottle, 2016. "Alternative approaches for addressing non-permanence in carbon projects: an application to afforestation and reforestation under the Clean Development Mechanism," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 101-118, January.
  • Handle: RePEc:spr:masfgc:v:21:y:2016:i:1:p:101-118
    DOI: 10.1007/s11027-014-9573-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9573-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-014-9573-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susan Subak, 2003. "Replacing carbon lost from forests: an assessment of insurance, reserves, and expiring credits," Climate Policy, Taylor & Francis Journals, vol. 3(2), pages 107-122, June.
    2. S. Brown & M. Burnham & M. Delaney & M. Powell & R. Vaca & A. Moreno, 2000. "Issues and challenges for forest-based carbon-offset projects: A case study of the Noel Kempff climate action project in Bolivia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(1), pages 99-121, March.
    3. Kim, Man-Keun & McCarl, Bruce A. & Murray, Brian C., 2008. "Permanence discounting for land-based carbon sequestration," Ecological Economics, Elsevier, vol. 64(4), pages 763-769, February.
    4. Meenakshi Kaul & G. Mohren & V. Dadhwal, 2010. "Carbon storage and sequestration potential of selected tree species in India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(5), pages 489-510, June.
    5. Olschewski, Roland & Benitez, Pablo C., 2005. "Secondary forests as temporary carbon sinks? The economic impact of accounting methods on reforestation projects in the tropics," Ecological Economics, Elsevier, vol. 55(3), pages 380-394, November.
    6. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    7. Marechal, Kevin & Hecq, Walter, 2006. "Temporary credits: A solution to the potential non-permanence of carbon sequestration in forests?," Ecological Economics, Elsevier, vol. 58(4), pages 699-716, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parisa, Zack & Marland, Eric & Sohngen, Brent & Marland, Gregg & Jenkins, Jennifer, 2022. "The time value of carbon storage," Forest Policy and Economics, Elsevier, vol. 144(C).
    2. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.
    3. Djanibekov, Utkur & Khamzina, Asia & Djanibekov, Nodir & Lamers, John P.A., 2012. "How attractive are short-term CDM forestations in arid regions? The case of irrigated croplands in Uzbekistan," Forest Policy and Economics, Elsevier, vol. 21(C), pages 108-117.
    4. Ekholm, Tommi, 2016. "Optimal forest rotation age under efficient climate change mitigation," Forest Policy and Economics, Elsevier, vol. 62(C), pages 62-68.
    5. Caparros, Alejandro & Cerda, Emilio & Ovando, P. & Campos, Pablo, 2007. "Carbon Sequestration with Reforestations and Biodiversity-Scenic Values," Climate Change Modelling and Policy Working Papers 9323, Fondazione Eni Enrico Mattei (FEEM).
    6. David Cooley & Christopher Galik & Thomas Holmes & Carolyn Kousky & Roger Cooke, 2012. "Managing dependencies in forest offset projects: toward a more complete evaluation of reversal risk," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 17-24, January.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. Alejandro Caparrós & David Zilberman, 2010. "Optimal carbon sequestration path when different biological or physical sequestration," Working Papers 1018, Instituto de Políticas y Bienes Públicos (IPP), CSIC.
    9. Trotter, Ian Michael & da Cunha, Dênis Antônio & Féres, José Gustavo, 2015. "The relationships between CDM project characteristics and CER market prices," Ecological Economics, Elsevier, vol. 119(C), pages 158-167.
    10. Gren, Ing-Marie & Zeleke, Abenezer Aklilu, 2016. "Policy design for forest carbon sequestration: A review of the literature," Forest Policy and Economics, Elsevier, vol. 70(C), pages 128-136.
    11. Craig Loehle, 2023. "The problem of permanence for carbon sequestration in forests," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(8), pages 1-11, December.
    12. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    13. Graves, Rose A. & Nielsen-Pincus, Max & Haugo, Ryan D. & Holz, Andrés, 2022. "Forest carbon incentive programs for non-industrial private forests in Oregon (USA): Impacts of program design on willingness to enroll and landscape-scale program outcomes," Forest Policy and Economics, Elsevier, vol. 141(C).
    14. Robin Naidoo & Taylor H Ricketts, 2006. "Mapping the Economic Costs and Benefits of Conservation," PLOS Biology, Public Library of Science, vol. 4(11), pages 1-12, October.
    15. Benitez, Pablo C. & McCallum, Ian & Obersteiner, Michael & Yamagata, Yoshiki, 2007. "Global potential for carbon sequestration: Geographical distribution, country risk and policy implications," Ecological Economics, Elsevier, vol. 60(3), pages 572-583, January.
    16. Nana, Tian & Lu, Fadian, 2013. "Adaptive management decision of agroforestry under timber price risk," Journal of Forest Economics, Elsevier, vol. 19(2), pages 162-173.
    17. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    18. Smith, Joyotee & Scherr, Sara J., 2003. "Capturing the Value of Forest Carbon for Local Livelihoods," World Development, Elsevier, vol. 31(12), pages 2143-2160, December.
    19. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    20. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:21:y:2016:i:1:p:101-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.