IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v6y2019i1d10.1186_s40488-019-0099-x.html
   My bibliography  Save this article

Meta analysis of binary data with excessive zeros in two-arm trials

Author

Listed:
  • Saman Muthukumarana

    (Department of Statistics, University of Manitoba)

  • David Martell

    (ITAM)

  • Ram Tiwari

    (Office of Biostatistics, Center for Drug Evaluation and Research, Food and Drug Administration)

Abstract

We present a novel Bayesian approach to random effects meta analysis of binary data with excessive zeros in two-arm trials. We discuss the development of likelihood accounting for excessive zeros, the prior, and the posterior distributions of parameters of interest. Dirichlet process prior is used to account for the heterogeneity among studies. A zero inflated binomial model with excessive zero parameters were used to account for excessive zeros in treatment and control arms. We then define a modified unconditional odds ratio accounting for excessive zeros in two arms. The Bayesian inference is carried out using Markov chain Monte Carlo (MCMC) sampling techniques. We illustrate the approach using data available in published literature on myocardial infarction and death from cardiovascular causes. Bayesian approaches presented here use all the data, including the studies with zero events and capture heterogeneity among study effects, and produce interpretable estimates of overall and study-level odds-ratios, over the commonly used frequentist’s approaches. Results from the data analysis and the model selection also indicate that the proposed Bayesian method, while accounting for zero events, adjusts for excessive zeros and provides better fit to the data resulting in the estimates of overall odds-ratio and study-level odds-ratios that are based on the totality of the information.

Suggested Citation

  • Saman Muthukumarana & David Martell & Ram Tiwari, 2019. "Meta analysis of binary data with excessive zeros in two-arm trials," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-17, December.
  • Handle: RePEc:spr:jstada:v:6:y:2019:i:1:d:10.1186_s40488-019-0099-x
    DOI: 10.1186/s40488-019-0099-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-019-0099-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-019-0099-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    2. Deborah Burr & Hani Doss, 2005. "A Bayesian Semiparametric Model for Random-Effects Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 242-251, March.
    3. Adam J. Branscum & Timothy E. Hanson, 2008. "Bayesian Nonparametric Meta‐Analysis Using Polya Tree Mixture Models," Biometrics, The International Biometric Society, vol. 64(3), pages 825-833, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burr, Deborah, 2012. "bspmma: An R Package for Bayesian Semiparametric Models for Meta-Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i04).
    2. Brown, Sarah & Ghosh, Pulak & Pareek, Bhuvanesh & Taylor, Karl, 2021. "The protective role of saving: Bayesian analysis of British panel data," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 57-72.
    3. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    4. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    5. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    6. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    7. Das, Ujjwal & Das, Kalyan, 2018. "Inference on zero inflated ordinal models with semiparametric link," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 104-115.
    8. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    9. Sarah Brown & Pulak Ghosh & Bhuvanesh Pareek & Karl Taylor, 2017. "Financial Hardship and Saving Behaviour: Bayesian Analysis of British Panel Data," Working Papers 2017011, The University of Sheffield, Department of Economics.
    10. Fisher, Mark & Jensen, Mark J., 2022. "Bayesian nonparametric learning of how skill is distributed across the mutual fund industry," Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
    11. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    12. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
    13. Abbas Moghimbeigi & Mohammed Reza Eshraghian & Kazem Mohammad & Brian Mcardle, 2008. "Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1193-1202.
    14. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.
    15. Harald Oberhofer & Michael Pfaffermayr, 2014. "Two-Part Models for Fractional Responses Defined as Ratios of Integers," Econometrics, MDPI, vol. 2(3), pages 1-22, September.
    16. Zhang, Tonglin, 2019. "General Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 234-247.
    17. Damgaard, Christian, 2008. "Modelling pin-point plant cover data along an environmental gradient," Ecological Modelling, Elsevier, vol. 214(2), pages 404-410.
    18. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Score tests for zero-inflated generalized Poisson mixed regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3478-3489, July.
    19. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    20. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:6:y:2019:i:1:d:10.1186_s40488-019-0099-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.