IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v3y2016i1d10.1186_s40488-016-0053-0.html
   My bibliography  Save this article

An R package for modeling and simulating generalized spherical and related distributions

Author

Listed:
  • John P. Nolan

    (American University)

Abstract

A flexible class of multivariate generalized spherical distributions with star-shaped level sets is developed. To work in dimension above two requires tools from computational geometry and multivariate numerical integration. An algorithm to approximately simulate from these star-shaped distributions is developed; it also works for simulating from more general tessellations. These techniques are implemented in the R package gensphere.

Suggested Citation

  • John P. Nolan, 2016. "An R package for modeling and simulating generalized spherical and related distributions," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-11, December.
  • Handle: RePEc:spr:jstada:v:3:y:2016:i:1:d:10.1186_s40488-016-0053-0
    DOI: 10.1186/s40488-016-0053-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-016-0053-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-016-0053-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    2. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    3. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    4. Denis Belomestny & Leonid Iosipoi, 2019. "Fourier transform MCMC, heavy tailed distributions and geometric ergodicity," Papers 1909.00698, arXiv.org, revised Dec 2019.
    5. Niels Wesselhöfft & Wolfgang K. Härdle, 2020. "Risk-Constrained Kelly Portfolios Under Alpha-Stable Laws," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 801-826, March.
    6. Belomestny, Denis & Iosipoi, Leonid, 2021. "Fourier transform MCMC, heavy-tailed distributions, and geometric ergodicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 351-363.
    7. Audrius Kabašinskas & Leonidas Sakalauskas & Ingrida Vaičiulytė, 2021. "An Analytical EM Algorithm for Sub-Gaussian Vectors," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    8. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    9. Simos G. Meintanis, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 898-902, December.
    10. Dai, Xinjie & Niu, Cuizhen & Guo, Xu, 2018. "Testing for central symmetry and inference of the unknown center," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 15-31.
    11. Krzyśko Mirosław & Smaga Łukasz, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Statistics Poland, vol. 21(3), pages 21-37, September.
    12. J. S. Allison & M. Hušková & S. G. Meintanis, 2018. "Testing the adequacy of semiparametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-94, March.
    13. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    14. Sajti, Szilárd, 2023. "Domain-domain correlation functions used in off-specular scattering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    15. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    16. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
    17. Roman Rodriguez-Aguilar & Jose Antonio Marmolejo-Saucedo & Brenda Retana-Blanco, 2019. "Prices of Mexican Wholesale Electricity Market: An Application of Alpha-Stable Regression," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    18. Mirosław Krzyśko & Łukasz Smaga, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 21-37, September.
    19. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
    20. M. Dolores Jiménez-Gamero & Sangyeol Lee & Simos G. Meintanis, 2020. "Goodness-of-fit tests for parametric specifications of conditionally heteroscedastic models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 682-703, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:3:y:2016:i:1:d:10.1186_s40488-016-0053-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.