IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i2d10.1007_s10951-022-00745-7.html
   My bibliography  Save this article

Scheduling to maximize the weighted number of on-time jobs on parallel machines with bounded job-rejection

Author

Listed:
  • Matan Atsmony

    (The Hebrew University)

  • Gur Mosheiov

    (The Hebrew University)

Abstract

We study a scheduling problem on parallel identical machines, where the objective function is maximizing the weighted number of jobs completed exactly at their due-dates. The scheduler may reject a subset of the jobs, and the total permitted rejection cost is assumed to be bounded. Thus, when a decision has to be made regarding a certain job, the following options need to be considered: either ( $$\mathrm{i}$$ i ) identify the set of machines on which the job can be scheduled on time, and assign the job to one of these machines, or ( $$\mathrm{ii}$$ ii ) reject the job (if possible), or ( $$\mathrm{iii}$$ iii ) delay the job. A pseudo-polynomial dynamic programming algorithm is introduced for this NP-hard problem. Medium size problems are solved in reasonable running times. We then study a different version of the problem, in which job-dependent due-windows are considered, and the job processing times are assumed to be identical. This version is proved to be NP-hard, and a pseudo-polynomial dynamic programming algorithm is introduced as well. Our numerical study indicates that medium size instances can be handled for this version. In addition, for both problems, an alternative solution procedure based on integer-linear-programming formulation is introduced.

Suggested Citation

  • Matan Atsmony & Gur Mosheiov, 2023. "Scheduling to maximize the weighted number of on-time jobs on parallel machines with bounded job-rejection," Journal of Scheduling, Springer, vol. 26(2), pages 193-207, April.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00745-7
    DOI: 10.1007/s10951-022-00745-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00745-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00745-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baruch Mor & Dana Shapira, 2019. "Improved algorithms for scheduling on proportionate flowshop with job-rejection," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(11), pages 1997-2003, November.
    2. Baruch Mor & Dana Shapira, 2020. "Scheduling with regular performance measures and optional job rejection on a single machine," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1315-1325, August.
    3. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    4. Dvir Shabtay & George Steiner, 2012. "Scheduling to Maximize the Number of Just-in-Time Jobs: A Survey," Springer Optimization and Its Applications, in: Roger Z. Ríos-Mercado & Yasmín A. Ríos-Solís (ed.), Just-in-Time Systems, chapter 0, pages 3-20, Springer.
    5. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    6. Xianzhao Zhang & Dachuan Xu & Donglei Du & Chenchen Wu, 2018. "Approximation algorithms for precedence-constrained identical machine scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 318-330, January.
    7. Baruch Mor & Gur Mosheiov, 2018. "A note: minimizing total absolute deviation of job completion times on unrelated machines with general position-dependent processing times and job-rejection," Annals of Operations Research, Springer, vol. 271(2), pages 1079-1085, December.
    8. Yin, Yunqiang & Cheng, Shuenn-Ren & Cheng, T.C.E. & Wang, Du-Juan & Wu, Chin-Chia, 2016. "Just-in-time scheduling with two competing agents on unrelated parallel machines," Omega, Elsevier, vol. 63(C), pages 41-47.
    9. Christos Koulamas & George J. Kyparisis, 2021. "The no-wait flow shop with rejection," International Journal of Production Research, Taylor & Francis Journals, vol. 59(6), pages 1852-1859, March.
    10. Enrique Gerstl & Gur Mosheiov, 2017. "Single machine scheduling problems with generalised due-dates and job-rejection," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3164-3172, June.
    11. Hui-Chih Hung & Bertrand M. T. Lin & Marc E. Posner & Jun-Min Wei, 2019. "Preemptive parallel-machine scheduling problem of maximizing the number of on-time jobs," Journal of Scheduling, Springer, vol. 22(4), pages 413-431, August.
    12. Mohammadreza Dabiri & Soroush Avakh Darestani & Bahman Naderi, 2019. "Multi-machine flow shop scheduling problems with rejection using genetic algorithm," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 32(2), pages 158-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingfa Lu & Liqi Zhang, 2023. "Scheduling problems with rejection to minimize the k-th power of the makespan plus the total rejection cost," Journal of Combinatorial Optimization, Springer, vol. 46(1), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baruch Mor & Gur Mosheiov, 2022. "Single machine scheduling to maximize the weighted number of on-time jobs with job-rejection," Operational Research, Springer, vol. 22(3), pages 2707-2719, July.
    2. Mosheiov, Gur & Oron, Daniel & Shabtay, Dvir, 2021. "Minimizing total late work on a single machine with generalized due-dates," European Journal of Operational Research, Elsevier, vol. 293(3), pages 837-846.
    3. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    4. Baruch Mor & Gur Mosheiov & Dvir Shabtay, 2021. "Minimizing the total tardiness and job rejection cost in a proportionate flow shop with generalized due dates," Journal of Scheduling, Springer, vol. 24(6), pages 553-567, December.
    5. Baruch Mor & Gur Mosheiov & Dana Shapira, 2021. "Single machine lot scheduling with optional job-rejection," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 1-11, January.
    6. Baruch Mor & Gur Mosheiov, 2021. "A note: flowshop scheduling with linear deterioration and job-rejection," 4OR, Springer, vol. 19(1), pages 103-111, March.
    7. Enrique Gerstl & Gur Mosheiov, 2023. "A note: maximizing the weighted number of Just-in-Time jobs for a given job sequence," Journal of Scheduling, Springer, vol. 26(4), pages 403-409, August.
    8. Guojun Hu & Pengxiang Pan & Suding Liu & Ping Yang & Runtao Xie, 2024. "The prize-collecting single machine scheduling with bounds and penalties," Journal of Combinatorial Optimization, Springer, vol. 48(2), pages 1-13, September.
    9. Yuan Zhang & Zhichao Geng & Jinjiang Yuan, 2020. "Two-Agent Pareto-Scheduling of Minimizing Total Weighted Completion Time and Total Weighted Late Work," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
    10. Baruch Mor & Gur Mosheiov & Dana Shapira, 2020. "Flowshop scheduling with learning effect and job rejection," Journal of Scheduling, Springer, vol. 23(6), pages 631-641, December.
    11. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
    12. Enrique Gerstl & Gur Mosheiov, 2020. "Single machine scheduling to maximize the number of on-time jobs with generalized due-dates," Journal of Scheduling, Springer, vol. 23(3), pages 289-299, June.
    13. Xiayan Cheng & Rongheng Li & Yunxia Zhou, 0. "Tighter price of anarchy for selfish task allocation on selfish machines," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-32.
    14. Yunqiang Yin & Doudou Li & Dujuan Wang & T. C. E. Cheng, 2021. "Single-machine serial-batch delivery scheduling with two competing agents and due date assignment," Annals of Operations Research, Springer, vol. 298(1), pages 497-523, March.
    15. Xiaofei Liu & Peiyin Xing & Weidong Li, 2020. "Approximation Algorithms for the Submodular Load Balancing with Submodular Penalties," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    16. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    17. Vahid Nasrollahi & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2022. "Minimizing the weighted sum of maximum earliness and maximum tardiness in a single-agent and two-agent form of a two-machine flow shop scheduling problem," Operational Research, Springer, vol. 22(2), pages 1403-1442, April.
    18. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    19. Baruch Mor, 2023. "Single machine scheduling problems involving job-dependent step-deterioration dates and job rejection," Operational Research, Springer, vol. 23(1), pages 1-19, March.
    20. Xiaofei Liu & Weidong Li & Yaoyu Zhu, 2021. "Single Machine Vector Scheduling with General Penalties," Mathematics, MDPI, vol. 9(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:2:d:10.1007_s10951-022-00745-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.