IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i1d10.1007_s10951-022-00768-0.html
   My bibliography  Save this article

Joint replenishment meets scheduling

Author

Listed:
  • Péter Györgyi

    (Eötvös Loránd Research Network)

  • Tamás Kis

    (Eötvös Loránd Research Network)

  • Tímea Tamási

    (Eötvös Loránd Research Network
    ELTE Eötvös Loránd University)

  • József Békési

    (University of Szeged)

Abstract

In this paper, we consider a combination of the joint replenishment problem (JRP) and single-machine scheduling with release dates. There is a single machine and one or more item types. Each job has a release date, a positive processing time, and it requires a subset of items. A job can be started at time t only if all the required item types were replenished between the release date of the job and time point t. The ordering of item types for distinct jobs can be combined. The objective is to minimize the total ordering cost plus a scheduling criterion, such as total weighted completion time or maximum flow time, where the cost of ordering a subset of items simultaneously is the sum of a joint ordering cost, and an additional item ordering cost for each item type in the subset. We provide several complexity results for the offline problem, and competitive analysis for online variants with min–sum and min–max criteria, respectively.

Suggested Citation

  • Péter Györgyi & Tamás Kis & Tímea Tamási & József Békési, 2023. "Joint replenishment meets scheduling," Journal of Scheduling, Springer, vol. 26(1), pages 77-94, February.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:1:d:10.1007_s10951-022-00768-0
    DOI: 10.1007/s10951-022-00768-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00768-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00768-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Retsef Levi & Robin Roundy & David Shmoys & Maxim Sviridenko, 2008. "A Constant Approximation Algorithm for the One-Warehouse Multiretailer Problem," Management Science, INFORMS, vol. 54(4), pages 763-776, April.
    2. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    3. Edward J. Anderson & Chris N. Potts, 2004. "Online Scheduling of a Single Machine to Minimize Total Weighted Completion Time," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 686-697, August.
    4. C. N. Potts, 1980. "Technical Note—Analysis of a Heuristic for One Machine Sequencing with Release Dates and Delivery Times," Operations Research, INFORMS, vol. 28(6), pages 1436-1441, December.
    5. Retsef Levi & Robin O. Roundy & David B. Shmoys, 2006. "Primal-Dual Algorithms for Deterministic Inventory Problems," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 267-284, May.
    6. Averbakh, Igor & Xue, Zhihui, 2007. "On-line supply chain scheduling problems with preemption," European Journal of Operational Research, Elsevier, vol. 181(1), pages 500-504, August.
    7. Niv Buchbinder & Tracy Kimbrel & Retsef Levi & Konstantin Makarychev & Maxim Sviridenko, 2013. "Online Make-to-Order Joint Replenishment Model: Primal-Dual Competitive Algorithms," Operations Research, INFORMS, vol. 61(4), pages 1014-1029, August.
    8. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Botond Bertok & Péter Biró & Marianna E.-Nagy, 2024. "Overview of Hungarian operations research based on the VOCAL 2022 conference," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(4), pages 897-902, December.
    2. Péter Györgyi & Tamás Kis & Tímea Tamási, 2023. "An online joint replenishment problem combined with single machine scheduling," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    2. Tamar Cohen-Hillel & Liron Yedidsion, 2018. "The Periodic Joint Replenishment Problem Is Strongly 𝒩𝒫-Hard," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1269-1289, November.
    3. Gautier Stauffer, 2018. "Approximation algorithms for k-echelon extensions of the one warehouse multi-retailer problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 445-473, December.
    4. Jean-Philippe Gayon & Guillaume Massonnet & Christophe Rapine & Gautier Stauffer, 2017. "Fast Approximation Algorithms for the One-Warehouse Multi-Retailer Problem Under General Cost Structures and Capacity Constraints," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 854-875, August.
    5. Adam N. Elmachtoub & Retsef Levi, 2016. "Supply Chain Management with Online Customer Selection," Operations Research, INFORMS, vol. 64(2), pages 458-473, April.
    6. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
    7. Péter Györgyi & Tamás Kis & Tímea Tamási, 2023. "An online joint replenishment problem combined with single machine scheduling," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-20, July.
    8. Xin Feng & Yongxi Cheng & Feifeng Zheng & Yinfeng Xu, 2016. "Online integrated production–distribution scheduling problems without preemption," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1569-1585, May.
    9. Han, Bin & Zhang, Wenjun & Lu, Xiwen & Lin, Yingzi, 2015. "On-line supply chain scheduling for single-machine and parallel-machine configurations with a single customer: Minimizing the makespan and delivery cost," European Journal of Operational Research, Elsevier, vol. 244(3), pages 704-714.
    10. Xuefei Shi & Haiyan Wang, 2022. "Design of the cost allocation rule for joint replenishment to an overseas warehouse with a piecewise linear holding cost rate," Operational Research, Springer, vol. 22(5), pages 4905-4929, November.
    11. Shuo Zhang & Jianyou Xu & Yingli Qiao, 2023. "Multi-Objective Q-Learning-Based Brain Storm Optimization for Integrated Distributed Flow Shop and Distribution Scheduling Problems," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
    12. Marcin Bienkowski & Martin Böhm & Jaroslaw Byrka & Marek Chrobak & Christoph Dürr & Lukáš Folwarczný & Łukasz Jeż & Jiří Sgall & Nguyen Kim Thang & Pavel Veselý, 2020. "Online Algorithms for Multilevel Aggregation," Operations Research, INFORMS, vol. 68(1), pages 214-232, January.
    13. He-Yau Kang & Amy H.I. Lee & Chien-Wei Wu & Cheng-Han Lee, 2017. "An efficient method for dynamic-demand joint replenishment problem with multiple suppliers and multiple vehicles," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1065-1084, February.
    14. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    15. Niv Buchbinder & Tracy Kimbrel & Retsef Levi & Konstantin Makarychev & Maxim Sviridenko, 2013. "Online Make-to-Order Joint Replenishment Model: Primal-Dual Competitive Algorithms," Operations Research, INFORMS, vol. 61(4), pages 1014-1029, August.
    16. Nodari Vakhania & Badri Mamporia, 2020. "Fast Algorithms for Basic Supply Chain Scheduling Problems," Mathematics, MDPI, vol. 8(11), pages 1-19, November.
    17. Lehilton L. C. Pedrosa & Maxim Sviridenko, 2018. "Integrated Supply Chain Management via Randomized Rounding," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 124-136, February.
    18. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    19. Jesus O. Cunha & Rafael A. Melo, 2016. "On reformulations for the one-warehouse multi-retailer problem," Annals of Operations Research, Springer, vol. 238(1), pages 99-122, March.
    20. Levi DeValve & Saša Pekeč & Yehua Wei, 2020. "A Primal-Dual Approach to Analyzing ATO Systems," Management Science, INFORMS, vol. 66(11), pages 5389-5407, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:1:d:10.1007_s10951-022-00768-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.