IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v25y2022i6d10.1007_s10951-022-00732-y.html
   My bibliography  Save this article

Online algorithms to schedule a proportionate flexible flow shop of batching machines

Author

Listed:
  • Christoph Hertrich

    (Technische Universität Kaiserslautern
    Technische Universität Berlin)

  • Christian Weiß

    (Fraunhofer Institute for Industrial Mathematics ITWM)

  • Heiner Ackermann

    (Fraunhofer Institute for Industrial Mathematics ITWM)

  • Sandy Heydrich

    (Fraunhofer Institute for Industrial Mathematics ITWM)

  • Sven O. Krumke

    (Technische Universität Kaiserslautern)

Abstract

This paper is the first to consider online algorithms to schedule a proportionate flexible flow shop of batching machines (PFFB). The scheduling model is motivated by manufacturing processes of individualized medicaments, which are used in modern medicine to treat some serious illnesses. We provide two different online algorithms, proving also lower bounds for the offline problem to compute their competitive ratios. The first algorithm is an easy-to-implement, general local scheduling heuristic. It is 2-competitive for PFFBs with an arbitrary number of stages and for several natural scheduling objectives. We also show that for total/average flow time, no deterministic algorithm with better competitive ratio exists. For the special case with two stages and the makespan or total completion time objective, we describe an improved algorithm that achieves the best possible competitive ratio $$\varphi =\frac{1+\sqrt{5}}{2}$$ φ = 1 + 5 2 , the golden ratio. All our results also hold for proportionate (non-flexible) flow shops of batching machines (PFB) for which this is also the first paper to study online algorithms.

Suggested Citation

  • Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2022. "Online algorithms to schedule a proportionate flexible flow shop of batching machines," Journal of Scheduling, Springer, vol. 25(6), pages 643-657, December.
  • Handle: RePEc:spr:jsched:v:25:y:2022:i:6:d:10.1007_s10951-022-00732-y
    DOI: 10.1007/s10951-022-00732-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-022-00732-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-022-00732-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amin-Naseri, Mohammad Reza & Beheshti-Nia, Mohammad Ali, 2009. "Hybrid flow shop scheduling with parallel batching," International Journal of Production Economics, Elsevier, vol. 117(1), pages 185-196, January.
    2. Chengwen Jiao & Wenhua Li & Jinjiang Yuan, 2014. "A Best Possible Online Algorithm For Scheduling To Minimize Maximum Flow-Time On Bounded Batch Machines," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(04), pages 1-10.
    3. Yi Tan & Lars Mönch & John W. Fowler, 2018. "A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines," Journal of Scheduling, Springer, vol. 21(2), pages 209-226, April.
    4. Jianfa Cao & Jinjiang Yuan & Wenjie Li & Hailin Bu, 2011. "Online scheduling on batching machines to minimise the total weighted completion time of jobs with precedence constraints and identical processing times," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(1), pages 51-55.
    5. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    6. Yang Fang & Peihai Liu & Xiwen Lu, 2011. "Optimal on-line algorithms for one batch machine with grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 509-516, November.
    7. Xiaotie Deng & Chung Keung Poon & Yuzhong Zhang, 2003. "Approximation Algorithms in Batch Processing," Journal of Combinatorial Optimization, Springer, vol. 7(3), pages 247-257, September.
    8. Javad H. Ahmadi & Reza H. Ahmadi & Sriram Dasu & Christopher S. Tang, 1992. "Batching and Scheduling Jobs on Batch and Discrete Processors," Operations Research, INFORMS, vol. 40(4), pages 750-763, August.
    9. S.S. Panwalkar & Milton L. Smith & Christos Koulamas, 2013. "Review of the ordered and proportionate flow shop scheduling research," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(1), pages 46-55, February.
    10. Ma, Ran & Wan, Long & Wei, Lijun & Yuan, Jinjiang, 2014. "Online bounded-batch scheduling to minimize total weighted completion time on parallel machines," International Journal of Production Economics, Elsevier, vol. 156(C), pages 31-38.
    11. Sung, Chang Sup & Kim, Young Hwan & Yoon, Sang Hum, 2000. "A problem reduction and decomposition approach for scheduling for a flowshop of batch processing machines," European Journal of Operational Research, Elsevier, vol. 121(1), pages 179-192, February.
    12. Gouchuan Zhang & Xiaoqiang Cai & C.K. Wong, 2001. "On‐line algorithms for minimizing makespan on batch processing machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 241-258, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    3. Beat Gfeller & Leon Peeters & Birgitta Weber & Peter Widmayer, 2009. "Single machine batch scheduling with release times," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 323-338, April.
    4. Chung Keung Poon & Wenci Yu, 2005. "On-Line Scheduling Algorithms for a Batch Machine with Finite Capacity," Journal of Combinatorial Optimization, Springer, vol. 9(2), pages 167-186, March.
    5. Xing Chai & Wenhua Li & Yuejuan Zhu, 2021. "Online scheduling to minimize maximum weighted flow-time on a bounded parallel-batch machine," Annals of Operations Research, Springer, vol. 298(1), pages 79-93, March.
    6. Yang Fang & Peihai Liu & Xiwen Lu, 2011. "Optimal on-line algorithms for one batch machine with grouped processing times," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 509-516, November.
    7. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    8. Nong, Qingqin & Yuan, Jinjiang & Fu, Ruyan & Lin, Lin & Tian, Ji, 2008. "The single-machine parallel-batching on-line scheduling problem with family jobs to minimize makespan," International Journal of Production Economics, Elsevier, vol. 111(2), pages 435-440, February.
    9. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    10. Laub, Jeffrey D. & Fowler, John W. & Keha, Ahmet B., 2007. "Minimizing makespan with multiple-orders-per-job in a two-machine flowshop," European Journal of Operational Research, Elsevier, vol. 182(1), pages 63-79, October.
    11. Jinjiang Yuan & Shisheng Li & Ji Tian & Ruyan Fu, 2009. "A best on-line algorithm for the single machine parallel-batch scheduling with restricted delivery times," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 206-213, February.
    12. Yi Tan & Lars Mönch & John W. Fowler, 2018. "A hybrid scheduling approach for a two-stage flexible flow shop with batch processing machines," Journal of Scheduling, Springer, vol. 21(2), pages 209-226, April.
    13. Chengwen Jiao & Jinjiang Yuan & Qi Feng, 2019. "Online Algorithms for Scheduling Unit Length Jobs on Unbounded Parallel-Batch Machines with Linearly Lookahead," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(05), pages 1-8, October.
    14. Li, Shuguang, 2017. "Parallel batch scheduling with inclusive processing set restrictions and non-identical capacities to minimize makespan," European Journal of Operational Research, Elsevier, vol. 260(1), pages 12-20.
    15. Hailing Liu & Jinjiang Yuan & Wenjie Li, 2016. "Online scheduling of equal length jobs on unbounded parallel batch processing machines with limited restart," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1609-1622, May.
    16. Wenhua Li & Weina Zhai & Xing Chai, 2019. "Online Bi-Criteria Scheduling on Batch Machines with Machine Costs," Mathematics, MDPI, vol. 7(10), pages 1-11, October.
    17. Jin Qian & Haiyan Han, 2022. "Improved algorithms for proportionate flow shop scheduling with due-window assignment," Annals of Operations Research, Springer, vol. 309(1), pages 249-258, February.
    18. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    19. Sun Lee, Ik & Yoon, S.H., 2010. "Coordinated scheduling of production and delivery stages with stage-dependent inventory holding costs," Omega, Elsevier, vol. 38(6), pages 509-521, December.
    20. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:25:y:2022:i:6:d:10.1007_s10951-022-00732-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.