IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i1d10.1007_s10959-024-01390-w.html
   My bibliography  Save this article

Note on the Weak Convergence of Hyperplane $$\alpha $$ α -Quantile Functionals and Their Continuity in the Skorokhod J1 Topology

Author

Listed:
  • Pietro Maria Sparago

    (London School of Economics and Political Science)

Abstract

The $$\alpha $$ α -quantile $$M_{t,\alpha }$$ M t , α of a stochastic process has been introduced in Miura (Hitotsubashi J Commerce Manag 27(1):15–28, 1992), and important distributional results have been derived in Akahori (Ann Appl Probab 5(2):383–388, 1995), Dassios (Ann Appl Probab 5(2):389–398, 1995) and Yor (J Appl Probab 32(2):405–416, 1995), with special attention given to the problem of pricing $$\alpha $$ α -quantile options. We straightforwardly extend the classical monodimensional setting to $${\mathbb {R}}^d$$ R d by introducing the hyperplane $$\alpha $$ α -quantile, and we find an explicit functional continuity set of the $$\alpha $$ α -quantile as a functional mapping $${\mathbb {R}}^d$$ R d -valued càdlàg functions to $${\mathbb {R}}$$ R . This specification allows us to use continuous mapping and assert that if a $${\mathbb {R}}^d$$ R d -valued càdlàg stochastic process X a.s. belongs to such continuity set, then $$X^n\Rightarrow X$$ X n ⇒ X (i.e., weakly in the Skorokhod sense) implies $$M_{t,\alpha }(X^n)\rightarrow ^\text {w}M_{t,\alpha }(X)$$ M t , α ( X n ) → w M t , α ( X ) (i.e., weakly) in the usual sense. We further the discussion by considering the conditions for convergence of a ‘random time’ functional of $$M_{t,\alpha }$$ M t , α , the first time at which the $$\alpha $$ α -quantile has been hit, applied to sequences of càdlàg functions converging in the Skorokhod topology. The Brownian distribution of this functional is studied, e.g., in Chaumont (J Lond Math Soc 59(2):729–741, 1999) and Dassios (Bernoulli 11(1):29–36, 2005). We finally prove the fact that if the limit process of a sequence of càdlàg stochastic processes is a multidimensional Brownian motion with nontrivial covariance structure, such random time functional applied to the sequence of processes converges—jointly with the $$\alpha $$ α -quantile—weakly in the usual sense.

Suggested Citation

  • Pietro Maria Sparago, 2025. "Note on the Weak Convergence of Hyperplane $$\alpha $$ α -Quantile Functionals and Their Continuity in the Skorokhod J1 Topology," Journal of Theoretical Probability, Springer, vol. 38(1), pages 1-12, March.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:1:d:10.1007_s10959-024-01390-w
    DOI: 10.1007/s10959-024-01390-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01390-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01390-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bacry, E. & Delattre, S. & Hoffmann, M. & Muzy, J.F., 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2475-2499.
    2. Miura, Ryozo, 1992. "A Note on Look-Back Options Based on Order Statistics," Hitotsubashi Journal of commerce and management, Hitotsubashi University, vol. 27(1), pages 15-28, November.
    3. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    4. Emmanuel Bacry & Sylvain Delattre & Marc Hoffmann & Jean-François Muzy, 2013. "Some limit theorems for Hawkes processes and application to financial statistics," Post-Print hal-01313994, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sparago, Pietro, 2025. "Note on the weak convergence of hyperplane α-quantile functionals and their continuity in the Skorokhod J1 topology," LSE Research Online Documents on Economics 126207, London School of Economics and Political Science, LSE Library.
    2. Anatoliy Swishchuk & Bruno Remillard & Robert Elliott & Jonathan Chavez-Casillas, 2017. "Compound Hawkes Processes in Limit Order Books," Papers 1712.03106, arXiv.org.
    3. Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
    4. Patrick Chang & Roger Bukuru & Tim Gebbie, 2019. "Revisiting the Epps effect using volume time averaging: An exercise in R," Papers 1912.02416, arXiv.org, revised Feb 2020.
    5. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    6. Paul Jusselin & Mathieu Rosenbaum, 2020. "No‐arbitrage implies power‐law market impact and rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1309-1336, October.
    7. Duval, Céline & Luçon, Eric & Pouzat, Christophe, 2022. "Interacting Hawkes processes with multiplicative inhibition," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 180-226.
    8. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    9. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    10. Cattiaux, Patrick & Colombani, Laetitia & Costa, Manon, 2022. "Limit theorems for Hawkes processes including inhibition," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 404-426.
    11. Hillairet, Caroline & Réveillac, Anthony & Rosenbaum, Mathieu, 2023. "An expansion formula for Hawkes processes and application to cyber-insurance derivatives," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 89-119.
    12. Takeuchi, Atsushi, 2019. "Integration by parts formulas for marked Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 229-237.
    13. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    14. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    15. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    16. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2018. "Modeling extreme risks in commodities and commodity currencies," Pacific-Basin Finance Journal, Elsevier, vol. 51(C), pages 108-120.
    17. Roueff, Francois & von Sachs, Rainer & Sansonnet, Laure, 2015. "Time-frequency analysis of locally stationary Hawkes processes," LIDAM Discussion Papers ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Qiyue He & Anatoliy Swishchuk, 2019. "Quantitative and Comparative Analyses of Limit Order Books with General Compound Hawkes Processes," Risks, MDPI, vol. 7(4), pages 1-21, November.
    19. Takaki Hayashi & Yuta Koike, 2016. "Wavelet-based methods for high-frequency lead-lag analysis," Papers 1612.01232, arXiv.org, revised Nov 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:1:d:10.1007_s10959-024-01390-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.