IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01359-9.html
   My bibliography  Save this article

Moderate and $$L^p$$ L p Maximal Inequalities for Diffusion Processes and Conformal Martingales

Author

Listed:
  • Xian Chen

    (Xiamen University)

  • Yong Chen

    (Jiangxi Normal University)

  • Yumin Cheng

    (Jiangxi Normal University)

  • Chen Jia

    (Beijing Computational Science Research Center)

Abstract

The $$L^p$$ L p maximal inequalities for martingales are one of the classical results in the theory of stochastic processes. Here, we establish the sharp moderate maximal inequalities for one-dimensional diffusion processes, which generalize the $$L^p$$ L p maximal inequalities for diffusions. Moreover, we apply our theory to many specific examples, including the Ornstein–Uhlenbeck (OU) process, Brownian motion with drift, reflected Brownian motion with drift, Cox–Ingersoll–Ross process, radial OU process, and Bessel process. The results are further applied to establish the moderate maximal inequalities for some high-dimensional processes, including the complex OU process and general conformal local martingales.

Suggested Citation

  • Xian Chen & Yong Chen & Yumin Cheng & Chen Jia, 2024. "Moderate and $$L^p$$ L p Maximal Inequalities for Diffusion Processes and Conformal Martingales," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2990-3014, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01359-9
    DOI: 10.1007/s10959-024-01359-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01359-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01359-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. E. Graversen & G. Peškir, 1998. "Optimal Stopping and Maximal Inequalities for Linear Diffusions," Journal of Theoretical Probability, Springer, vol. 11(1), pages 259-277, January.
    2. Chen, Xian & Jia, Chen, 2020. "Mathematical foundation of nonequilibrium fluctuation–dissipation theorems for inhomogeneous diffusion processes with unbounded coefficients," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 171-202.
    3. Goran Peskir, 2001. "Bounding the Maximal Height of a Diffusion by the Time Elapsed," Journal of Theoretical Probability, Springer, vol. 14(3), pages 845-855, July.
    4. Chen Jia, 2019. "Sharp Moderate Maximal Inequalities for Upward Skip-Free Markov Chains," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1382-1398, September.
    5. Jia, Chen, 2016. "A solution to the reversible embedding problem for finite Markov chains," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 122-130.
    6. Zhang, Xicheng, 2005. "Strong solutions of SDES with singular drift and Sobolev diffusion coefficients," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1805-1818, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Jia, 2019. "Sharp Moderate Maximal Inequalities for Upward Skip-Free Markov Chains," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1382-1398, September.
    2. Gapeev, Pavel V., 2006. "On maximal inequalities for some jump processes," SFB 649 Discussion Papers 2006-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Pavel V. Gapeev & Peter M. Kort & Maria N. Lavrutich & Jacco J. J. Thijssen, 2022. "Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 789-813, June.
    4. Krylov, N.V., 2021. "On stochastic Itô processes with drift in Ld," Stochastic Processes and their Applications, Elsevier, vol. 138(C), pages 1-25.
    5. G. Prato & F. Flandoli & E. Priola & M. Röckner, 2015. "Strong Uniqueness for Stochastic Evolution Equations with Unbounded Measurable Drift Term," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1571-1600, December.
    6. Wenjie Ye, 2024. "Stochastic Differential Equations with Local Growth Singular Drifts," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2576-2614, September.
    7. Luo, Dejun, 2011. "Absolute continuity under flows generated by SDE with measurable drift coefficients," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2393-2415, October.
    8. Jinxia Wang, 2015. "Nonexplosion and Pathwise Uniqueness of Stochastic Differential Equation Driven by Continuous Semimartingale with Non-Lipschitz Coefficients," Journal of Mathematics, Hindawi, vol. 2015, pages 1-5, May.
    9. Michael J. Klass & Ming Yang, 2012. "Maximal Inequalities for Additive Processes," Journal of Theoretical Probability, Springer, vol. 25(4), pages 981-1012, December.
    10. Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.
    11. Dejun Luo, 2015. "Quasi-invariance of the Stochastic Flow Associated to Itô’s SDE with Singular Time-Dependent Drift," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1743-1762, December.
    12. Holden, Helge & Karlsen, Kenneth H. & Pang, Peter H.C., 2022. "Strong solutions of a stochastic differential equation with irregular random drift," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 655-677.
    13. Yang, Saisai & Zhang, Tusheng, 2023. "Strong solutions to reflecting stochastic differential equations with singular drift," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 126-155.
    14. Xie, Longjie, 2017. "Singular SDEs with critical non-local and non-symmetric Lévy type generator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3792-3824.
    15. János Engländer, 2020. "A Generalization of the Submartingale Property: Maximal Inequality and Applications to Various Stochastic Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 506-521, March.
    16. Manuel L. Esquível & Nadezhda P. Krasii & Gracinda R. Guerreiro, 2021. "Open Markov Type Population Models: From Discrete to Continuous Time," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
    17. Gapeev, Pavel V. & Li, Libo, 2022. "Perpetual American standard and lookback options with event risk and asymmetric information," LSE Research Online Documents on Economics 114940, London School of Economics and Political Science, LSE Library.
    18. Xia, Pengcheng & Xie, Longjie & Zhang, Xicheng & Zhao, Guohuan, 2020. "Lq(Lp)-theory of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5188-5211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01359-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.