Sharp Moderate Maximal Inequalities for Upward Skip-Free Markov Chains
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-018-0820-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Goran Peskir, 2001. "Bounding the Maximal Height of a Diffusion by the Time Elapsed," Journal of Theoretical Probability, Springer, vol. 14(3), pages 845-855, July.
- S. E. Graversen & G. Peškir, 1998. "Optimal Stopping and Maximal Inequalities for Linear Diffusions," Journal of Theoretical Probability, Springer, vol. 11(1), pages 259-277, January.
- Yan, Litan & Zhu, Bei, 2004. "A ratio inequality for Bessel processes," Statistics & Probability Letters, Elsevier, vol. 66(1), pages 35-44, January.
- James Allen Fill, 2009. "On Hitting Times and Fastest Strong Stationary Times for Skip-Free and More General Chains," Journal of Theoretical Probability, Springer, vol. 22(3), pages 587-600, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gapeev, Pavel V., 2006. "On maximal inequalities for some jump processes," SFB 649 Discussion Papers 2006-060, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Pavel V. Gapeev & Peter M. Kort & Maria N. Lavrutich & Jacco J. J. Thijssen, 2022.
"Optimal Double Stopping Problems for Maxima and Minima of Geometric Brownian Motions,"
Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 789-813, June.
- Gapeev, Pavel V. & Kort, Peter M. & Lavrutich, Maria N. & Thijssen, Jacco J. J., 2022. "Optimal double stopping problems for maxima and minima of geometric Brownian motions," LSE Research Online Documents on Economics 114849, London School of Economics and Political Science, LSE Library.
- James Allen Fill & Vince Lyzinski, 2014. "Hitting Times and Interlacing Eigenvalues: A Stochastic Approach Using Intertwinings," Journal of Theoretical Probability, Springer, vol. 27(3), pages 954-981, September.
- Laurent Miclo & Pierre Patie, 2021. "On interweaving relations," Post-Print hal-03159496, HAL.
- Michael J. Klass & Ming Yang, 2012. "Maximal Inequalities for Additive Processes," Journal of Theoretical Probability, Springer, vol. 25(4), pages 981-1012, December.
- Yu Gong & Yong-Hua Mao & Chi Zhang, 2012. "Hitting Time Distributions for Denumerable Birth and Death Processes," Journal of Theoretical Probability, Springer, vol. 25(4), pages 950-980, December.
- Michael C. H. Choi & Lu-Jing Huang, 2020. "On Hitting Time, Mixing Time and Geometric Interpretations of Metropolis–Hastings Reversiblizations," Journal of Theoretical Probability, Springer, vol. 33(2), pages 1144-1163, June.
- Yong-Hua Mao & Feng Wang & Xian-Yuan Wu, 2015. "Large Deviation Behavior for the Longest Head Run in an IID Bernoulli Sequence," Journal of Theoretical Probability, Springer, vol. 28(1), pages 259-268, March.
- Miclo, Laurent & Arnaudon, Marc & Coulibaly-Pasquier, Koléhè, 2024. "On Markov intertwining relations and primal conditioning," TSE Working Papers 24-1509, Toulouse School of Economics (TSE).
- L. Avena & A. Gaudillière, 2018. "Two Applications of Random Spanning Forests," Journal of Theoretical Probability, Springer, vol. 31(4), pages 1975-2004, December.
- Persi Diaconis & Laurent Miclo, 2009. "On Times to Quasi-stationarity for Birth and Death Processes," Journal of Theoretical Probability, Springer, vol. 22(3), pages 558-586, September.
- János Engländer, 2020. "A Generalization of the Submartingale Property: Maximal Inequality and Applications to Various Stochastic Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 506-521, March.
- Gapeev, Pavel V. & Li, Libo, 2022. "Perpetual American standard and lookback options with event risk and asymmetric information," LSE Research Online Documents on Economics 114940, London School of Economics and Political Science, LSE Library.
- James Allen Fill, 2009. "The Passage Time Distribution for a Birth-and-Death Chain: Strong Stationary Duality Gives a First Stochastic Proof," Journal of Theoretical Probability, Springer, vol. 22(3), pages 543-557, September.
More about this item
Keywords
Birth–death process; Single-birth process; M/M/1 queue; Moderate function; Lenglart domination principle; Good $$lambda $$ λ inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:3:d:10.1007_s10959-018-0820-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.