IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i2d10.1007_s10959-020-00987-1.html
   My bibliography  Save this article

Spectral Measures of Spiked Random Matrices

Author

Listed:
  • Nathan Noiry

    (UPL, Université Paris Nanterre)

Abstract

We study two spiked models of random matrices under general frameworks corresponding, respectively, to additive deformation of random symmetric matrices and multiplicative perturbation of random covariance matrices. In both cases, the limiting spectral measure in the direction of an eigenvector of the perturbation leads to old and new results on the coordinates of eigenvectors.

Suggested Citation

  • Nathan Noiry, 2021. "Spectral Measures of Spiked Random Matrices," Journal of Theoretical Probability, Springer, vol. 34(2), pages 923-952, June.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00987-1
    DOI: 10.1007/s10959-020-00987-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-00987-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-00987-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silverstein, J. W., 1995. "Strong Convergence of the Empirical Distribution of Eigenvalues of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 331-339, November.
    2. Silverstein, J. W. & Choi, S. I., 1995. "Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 295-309, August.
    3. M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huanchao Zhou & Zhidong Bai & Jiang Hu, 2023. "The Limiting Spectral Distribution of Large-Dimensional General Information-Plus-Noise-Type Matrices," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1203-1226, June.
    2. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    3. Couillet, Romain & Kammoun, Abla & Pascal, Frédéric, 2016. "Second order statistics of robust estimators of scatter. Application to GLRT detection for elliptical signals," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 249-274.
    4. Ledoit, Olivier & Wolf, Michael, 2017. "Numerical implementation of the QuEST function," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 199-223.
    5. Jamshid Namdari & Debashis Paul & Lili Wang, 2021. "High-Dimensional Linear Models: A Random Matrix Perspective," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 645-695, August.
    6. Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Couillet, Romain & McKay, Matthew, 2014. "Large dimensional analysis and optimization of robust shrinkage covariance matrix estimators," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 99-120.
    8. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    9. Bai, Zhidong & Yao, Jianfeng, 2012. "On sample eigenvalues in a generalized spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 167-177.
    10. Olivier Ledoit & Sandrine P�ch�, 2009. "Eigenvectors of some large sample covariance matrices ensembles," IEW - Working Papers 407, Institute for Empirical Research in Economics - University of Zurich.
    11. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    12. Mo, M.Y., 2010. "Universality in complex Wishart ensembles for general covariance matrices with 2 distinct eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1203-1225, May.
    13. Paul, Debashis & Silverstein, Jack W., 2009. "No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 37-57, January.
    14. Olivier Ledoit & Michael Wolf, 2013. "Optimal estimation of a large-dimensional covariance matrix under Stein’s loss," ECON - Working Papers 122, Department of Economics - University of Zurich, revised Mar 2017.
    15. Wang, Qinwen & Silverstein, Jack W. & Yao, Jian-feng, 2014. "A note on the CLT of the LSS for sample covariance matrix from a spiked population model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 194-207.
    16. Wen, Jun, 2018. "Estimation of two high-dimensional covariance matrices and the spectrum of their ratio," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 1-29.
    17. Olivier Ledoit & Michael Wolf, 2017. "Analytical nonlinear shrinkage of large-dimensional covariance matrices," ECON - Working Papers 264, Department of Economics - University of Zurich, revised Nov 2018.
    18. Tingting Zou & Shurong Zheng & Zhidong Bai & Jianfeng Yao & Hongtu Zhu, 2022. "CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data," Statistical Papers, Springer, vol. 63(2), pages 605-664, April.
    19. Tsubasa Ito & Tatsuya Kubokawa, 2015. "Linear Ridge Estimator of High-Dimensional Precision Matrix Using Random Matrix Theory ," CIRJE F-Series CIRJE-F-995, CIRJE, Faculty of Economics, University of Tokyo.
    20. Svensson, Jens, 2007. "The asymptotic spectrum of the EWMA covariance estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 621-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:2:d:10.1007_s10959-020-00987-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.