IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i2d10.1007_s10959-018-0847-8.html
   My bibliography  Save this article

The Hausdorff dimension of the range of the Lévy multistable processes

Author

Listed:
  • R. Guével

    (Univ Rennes, CNRS, IRMAR - UMR 6625)

Abstract

We compute the Hausdorff dimension of the image X(E) of a non-random Borel set $$E \subset [0,1]$$ E ⊂ [ 0 , 1 ] , where X is a Lévy multistable process in $$\mathbf{R}.$$ R . This extends the case where X is a classical stable Lévy process by letting the stability exponent $$\alpha $$ α be a smooth function. Hence, we are considering here non-homogeneous processes with increments which are not stationary and not necessarily independent. Contrary to the situation where the stability parameter is a constant, the dimension depends on the version of the multistable Lévy motion when the process has an infinite first moment.

Suggested Citation

  • R. Guével, 2019. "The Hausdorff dimension of the range of the Lévy multistable processes," Journal of Theoretical Probability, Springer, vol. 32(2), pages 765-780, June.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:2:d:10.1007_s10959-018-0847-8
    DOI: 10.1007/s10959-018-0847-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0847-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0847-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meerschaert, Mark M. & Xiao, Yimin, 2005. "Dimension results for sample paths of operator stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 55-75, January.
    2. K. J. Falconer & J. Lévy Véhel, 2009. "Multifractional, Multistable, and Other Processes with Prescribed Local Form," Journal of Theoretical Probability, Springer, vol. 22(2), pages 375-401, June.
    3. Ayache, Antoine, 2013. "Sharp estimates on the tail behavior of a multistable distribution," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 680-688.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronan Le Guével & Jacques Lévy Véhel & Lining Liu, 2015. "On Two Multistable Extensions of Stable Lévy Motion and Their Semi-martingale Representations," Journal of Theoretical Probability, Springer, vol. 28(3), pages 1125-1144, September.
    2. Tomasz Luks & Yimin Xiao, 2017. "On the Double Points of Operator Stable Lévy Processes," Journal of Theoretical Probability, Springer, vol. 30(1), pages 297-325, March.
    3. Le Guével, R. & Lévy Véhel, J., 2020. "Hausdorff, large deviation and Legendre multifractal spectra of Lévy multistable processes," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2032-2057.
    4. Peter Kern & Mark M. Meerschaert & Yimin Xiao, 2018. "Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties," Journal of Theoretical Probability, Springer, vol. 31(1), pages 598-617, March.
    5. K. J. Falconer & J. Lévy Véhel, 2020. "Self-Stabilizing Processes Based on Random Signs," Journal of Theoretical Probability, Springer, vol. 33(1), pages 134-152, March.
    6. Olivier Le Courtois, 2018. "Some Further Results on the Tempered Multistable Approach," Post-Print hal-02312142, HAL.
    7. Peter Kern & Lina Wedrich, 2014. "The Hausdorff Dimension of Operator Semistable Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(2), pages 383-403, June.
    8. Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
    9. Lőrinczi, József & Yang, Xiaochuan, 2019. "Multifractal properties of sample paths of ground state-transformed jump processes," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 83-94.
    10. Hou, Yanyan & Ying, Jiangang & Dai, Chaoshou, 2008. "Fractal sets determined by dilation-stable processes," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 852-863.
    11. Tomasz Luks & Yimin Xiao, 2020. "Multiple Points of Operator Semistable Lévy Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 153-179, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:2:d:10.1007_s10959-018-0847-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.