IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i1d10.1007_s10959-017-0788-7.html
   My bibliography  Save this article

Limit Theorems for Local and Occupation Times of Random Walks and Brownian Motion on a Spider

Author

Listed:
  • Endre Csáki

    (Hungarian Academy of Sciences)

  • Miklós Csörgő

    (Carleton University)

  • Antónia Földes

    (CUNY)

  • Pál Révész

    (Technische Universität Wien)

Abstract

A simple random walk and a Brownian motion are considered on a spider that is a collection of half lines (we call them legs) joined at the origin. We give a strong approximation of these two objects and their local times. For fixed number of legs, we establish limit theorems for n-step local and occupation times.

Suggested Citation

  • Endre Csáki & Miklós Csörgő & Antónia Földes & Pál Révész, 2019. "Limit Theorems for Local and Occupation Times of Random Walks and Brownian Motion on a Spider," Journal of Theoretical Probability, Springer, vol. 32(1), pages 330-352, March.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:1:d:10.1007_s10959-017-0788-7
    DOI: 10.1007/s10959-017-0788-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-017-0788-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-017-0788-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuko Yano, 2017. "On the Joint Law of the Occupation Times for a Diffusion Process on Multiray," Journal of Theoretical Probability, Springer, vol. 30(2), pages 490-509, June.
    2. Alexander Gairat & Vadim Shcherbakov, 2017. "Density Of Skew Brownian Motion And Its Functionals With Application In Finance," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1069-1088, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangli Xu & Xingchun Wang, 2021. "On the Transition Density and First Hitting Time Distributions of the Doubly Skewed CIR Process," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 735-752, September.
    2. Paavo Salminen & David Stenlund, 2021. "On Occupation Times of One-Dimensional Diffusions," Journal of Theoretical Probability, Springer, vol. 34(2), pages 975-1011, June.
    3. Li, Dan & Liu, Lixin & Xu, Guangli, 2023. "Psychological barriers and option pricing in a local volatility model," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    4. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    5. Paolo Pigato, 2019. "Extreme at-the-money skew in a local volatility model," Finance and Stochastics, Springer, vol. 23(4), pages 827-859, October.
    6. Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
    7. Yizhou Bai & Zhiyu Guo, 2019. "An Empirical Investigation to the “Skew” Phenomenon in Stock Index Markets: Evidence from the Nikkei 225 and Others," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    8. Alexander Gairat & Vadim Shcherbakov, 2023. "Extreme ATM skew in a local volatility model with discontinuity: joint density approach," Papers 2305.10849, arXiv.org, revised May 2024.
    9. Pasricha, Puneet & He, Xin-Jiang, 2022. "Skew-Brownian motion and pricing European exchange options," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Alexander Gairat & Vadim Shcherbakov, 2024. "Extreme ATM skew in a local volatility model with discontinuity: joint density approach," Finance and Stochastics, Springer, vol. 28(4), pages 1179-1202, October.
    11. Kolb, Aaron M., 2019. "Strategic real options," Journal of Economic Theory, Elsevier, vol. 183(C), pages 344-383.
    12. Gairat, Alexander & Shcherbakov, Vadim, 2022. "Skew Brownian motion with dry friction: Joint density approach," Statistics & Probability Letters, Elsevier, vol. 187(C).
    13. Lou, Shuwen, 2023. "On transition density functions of skew Brownian motions with two-valued drift," Statistics & Probability Letters, Elsevier, vol. 193(C).
    14. Zaniar Ahmadi & Xiaowen Zhou, 2024. "A note on Skew Brownian Motion with two-valued drift and an application," Papers 2407.09321, arXiv.org, revised Nov 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:1:d:10.1007_s10959-017-0788-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.