IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i4d10.1007_s10959-016-0693-5.html
   My bibliography  Save this article

Distributions with Heavy Tails in Orlicz Spaces

Author

Listed:
  • Dimitrios G. Konstantinides

    (University of the Aegean)

  • Christos E. Kountzakis

    (University of the Aegean)

Abstract

This paper relies on the application of Kantorovich functionals on quasi-interior points of the positive cone for certain classes of Orlicz spaces. Particularly we provide the asymptotic calculation of the ruin probability in the renewal risk model under heavy-tailed claims in the Orlicz spaces. This application assures the extension of classical asymptotic theory of regular variation.

Suggested Citation

  • Dimitrios G. Konstantinides & Christos E. Kountzakis, 2017. "Distributions with Heavy Tails in Orlicz Spaces," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1726-1762, December.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0693-5
    DOI: 10.1007/s10959-016-0693-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0693-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0693-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haezendonck, J. & Goovaerts, M., 1982. "A new premium calculation principle based on Orlicz norms," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 41-53, January.
    2. Tang, Qihe & Tsitsiashvili, Gurami, 2003. "Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks," Stochastic Processes and their Applications, Elsevier, vol. 108(2), pages 299-325, December.
    3. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    4. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keita Owari, 2013. "On the Lebesgue Property of Monotone Convex Functions," Papers 1305.2271, arXiv.org, revised Dec 2013.
    2. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    3. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    4. Kountzakis, C. & Polyrakis, I.A., 2013. "Coherent risk measures in general economic models and price bubbles," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 201-209.
    5. Leipus, Remigijus & Paukštys, Saulius & Šiaulys, Jonas, 2021. "Tails of higher-order moments of sums with heavy-tailed increments and application to the Haezendonck–Goovaerts risk measure," Statistics & Probability Letters, Elsevier, vol. 170(C).
    6. Farkas, Walter & Koch-Medina, Pablo & Munari, Cosimo, 2014. "Capital requirements with defaultable securities," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 58-67.
    7. Pichler, Alois, 2013. "The natural Banach space for version independent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 405-415.
    8. Bellini, Fabio & Rosazza Gianin, Emanuela, 2012. "Haezendonck–Goovaerts risk measures and Orlicz quantiles," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 107-114.
    9. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    10. Massoomeh Rahsepar & Foivos Xanthos, 2020. "On the extension property of dilatation monotone risk measures," Papers 2002.11865, arXiv.org.
    11. Laeven, Roger J.A. & Rosazza Gianin, Emanuela & Zullino, Marco, 2024. "Law-invariant return and star-shaped risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 140-153.
    12. Keita Owari, 2013. "Maximum Lebesgue Extension of Monotone Convex Functions," CARF F-Series CARF-F-315, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Marcelo Brutti Righi, 2017. "Closed spaces induced by deviation measures," Economics Bulletin, AccessEcon, vol. 37(3), pages 1781-1784.
    14. Krätschmer, Volker & Zähle, Henryk, 2010. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," SFB 649 Discussion Papers 2010-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    16. Denis Belomestny & Volker Krätschmer, 2017. "Optimal Stopping Under Probability Distortions," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 806-833, August.
    17. Mucahit Aygun & Fabio Bellini & Roger J. A. Laeven, 2023. "Elicitability of Return Risk Measures," Papers 2302.13070, arXiv.org, revised Mar 2023.
    18. Krätschmer, Volker & Zähle, Henryk, 2011. "Sensitivity of risk measures with respect to the normal approximation of total claim distributions," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 335-344.
    19. Keita Owari, 2012. "Maximum Lebesgue Extension Of Convex Risk Measures," CARF F-Series CARF-F-287, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:4:d:10.1007_s10959-016-0693-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.