IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v29y2016i1d10.1007_s10959-014-0565-9.html
   My bibliography  Save this article

Limit Theory for the Sample Autocovariance for Heavy-Tailed Stationary Infinitely Divisible Processes Generated by Conservative Flows

Author

Listed:
  • Takashi Owada

    (Cornell University)

Abstract

This study aim to develop limit theorems on the sample autocovariances and sample autocorrelations for certain stationary infinitely divisible processes. We consider the case where the infinitely divisible process has heavy tail marginals and is generated by a conservative flow. Interestingly, the growth rate of the sample autocovariances is determined not only by heavy tailedness of the marginals but also by the memory length of the process. Although this feature was first observed by Resnick et al. (Stoch Process Appl 85:321–339, 2000) for some very specific processes, we will propose a more general framework from the viewpoint of infinite ergodic theory. Consequently, the asymptotics of the sample autocovariances can be more comprehensively discussed.

Suggested Citation

  • Takashi Owada, 2016. "Limit Theory for the Sample Autocovariance for Heavy-Tailed Stationary Infinitely Divisible Processes Generated by Conservative Flows," Journal of Theoretical Probability, Springer, vol. 29(1), pages 63-95, March.
  • Handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0565-9
    DOI: 10.1007/s10959-014-0565-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-014-0565-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-014-0565-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Resnick, Sidney & Samorodnitsky, Gennady & Xue, Fang, 2000. "Growth rates of sample covariances of stationary symmetric [alpha]-stable processes associated with null recurrent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 321-339, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuyang Bai, 2022. "Limit Theorems for Conservative Flows on Multiple Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 35(2), pages 917-948, June.
    2. Parthanil Roy, 2017. "Maxima of stable random fields, nonsingular actions and finitely generated abelian groups: A survey," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(4), pages 513-540, December.
    3. Zaoli Chen & Gennady Samorodnitsky, 2020. "Extreme Value Theory for Long-Range-Dependent Stable Random Fields," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1894-1918, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaoli Chen & Gennady Samorodnitsky, 2020. "Extreme Value Theory for Long-Range-Dependent Stable Random Fields," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1894-1918, December.
    2. Chen, Zaoli & Samorodnitsky, Gennady, 2022. "Extremal clustering under moderate long range dependence and moderately heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 86-116.
    3. Resnick, Sidney & Samorodnitsky, Gennady, 2004. "Point processes associated with stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 191-209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:29:y:2016:i:1:d:10.1007_s10959-014-0565-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.