IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v145y2022icp86-116.html
   My bibliography  Save this article

Extremal clustering under moderate long range dependence and moderately heavy tails

Author

Listed:
  • Chen, Zaoli
  • Samorodnitsky, Gennady

Abstract

We study clustering of the extremes in a stationary sequence with subexponential tails in the maximum domain of attraction of the Gumbel distribution. We obtain functional limit theorems in the space D[0,∞) and in the space of random sup-measures. The limits have the Gumbel distribution if the memory is only moderately long. However, as our results demonstrate rather strikingly, the “heuristic of a single big jump” could fail even in a moderately long range dependence setting. As the tails become lighter, the extremal behavior of a stationary process may depend on multiple large values of the driving noise.

Suggested Citation

  • Chen, Zaoli & Samorodnitsky, Gennady, 2022. "Extremal clustering under moderate long range dependence and moderately heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 86-116.
  • Handle: RePEc:eee:spapps:v:145:y:2022:i:c:p:86-116
    DOI: 10.1016/j.spa.2021.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921002039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Resnick, Sidney & Samorodnitsky, Gennady & Xue, Fang, 2000. "Growth rates of sample covariances of stationary symmetric [alpha]-stable processes associated with null recurrent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 321-339, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaoli Chen & Gennady Samorodnitsky, 2020. "Extreme Value Theory for Long-Range-Dependent Stable Random Fields," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1894-1918, December.
    2. Takashi Owada, 2016. "Limit Theory for the Sample Autocovariance for Heavy-Tailed Stationary Infinitely Divisible Processes Generated by Conservative Flows," Journal of Theoretical Probability, Springer, vol. 29(1), pages 63-95, March.
    3. Resnick, Sidney & Samorodnitsky, Gennady, 2004. "Point processes associated with stationary stable processes," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 191-209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:145:y:2022:i:c:p:86-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.