IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v22y2009i3d10.1007_s10959-008-0156-8.html
   My bibliography  Save this article

On Distributional Properties of Perpetuities

Author

Listed:
  • Gerold Alsmeyer

    (Westfälische Wilhelms-Universität Münster)

  • Alex Iksanov

    (National T. Shevchenko University)

  • Uwe Rösler

    (Christian-Albrechts-Universität zu Kiel)

Abstract

We study probability distributions of convergent random series of a special structure, called perpetuities. By giving a new argument, we prove that such distributions are of pure type: degenerate, absolutely continuous, or continuously singular. We further provide necessary and sufficient criteria for the finiteness of p-moments, p>0, as well as exponential moments. In particular, a formula for the abscissa of convergence of the moment generating function is provided. The results are illustrated with a number of examples at the end of the article.

Suggested Citation

  • Gerold Alsmeyer & Alex Iksanov & Uwe Rösler, 2009. "On Distributional Properties of Perpetuities," Journal of Theoretical Probability, Springer, vol. 22(3), pages 666-682, September.
  • Handle: RePEc:spr:jotpro:v:22:y:2009:i:3:d:10.1007_s10959-008-0156-8
    DOI: 10.1007/s10959-008-0156-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-008-0156-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-008-0156-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iksanov, Aleksander M., 2004. "Elementary fixed points of the BRW smoothing transforms with infinite number of summands," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 27-50, November.
    2. Aleksander M. Iksanov & Che Soong Kim, 2004. "New Explicit Examples of Fixed Points of Poisson Shot Noise Transforms," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 46(2), pages 313-321, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaakko Lehtomaa, 2015. "Asymptotic Behaviour of Ruin Probabilities in a General Discrete Risk Model Using Moment Indices," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1380-1405, December.
    2. Anita Behme & Alexander Lindner, 2015. "On Exponential Functionals of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(2), pages 681-720, June.
    3. Gerold Alsmeyer & Alexander Iksanov & Matthias Meiners, 2015. "Power and Exponential Moments of the Number of Visits and Related Quantities for Perturbed Random Walks," Journal of Theoretical Probability, Springer, vol. 28(1), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olvera-Cravioto, Mariana, 2012. "Tail behavior of solutions of linear recursions on trees," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1777-1807.
    2. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    3. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    4. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    5. Iksanov, A.M.Aleksander M. & Kim, Che-Soong, 2004. "On a Pitman-Yor problem," Statistics & Probability Letters, Elsevier, vol. 68(1), pages 61-72, June.
    6. Iksanov, Aleksander M., 2004. "Elementary fixed points of the BRW smoothing transforms with infinite number of summands," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 27-50, November.
    7. Meiners, Matthias, 2009. "Weighted branching and a pathwise renewal equation," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2579-2597, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:22:y:2009:i:3:d:10.1007_s10959-008-0156-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.