IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v119y2009i8p2579-2597.html
   My bibliography  Save this article

Weighted branching and a pathwise renewal equation

Author

Listed:
  • Meiners, Matthias

Abstract

This paper is devoted to the study of a pathwise renewal equation for stochastic processes which are functions of a weighted tree defined in a general weighted branching model. Motivated by applications in the analysis of certain stochastic fixed-point equations and in the theory of general (Crump-Mode-Jagers) branching processes, we analyze the solutions to the equation under several conditions, the main result being a characterization of the set of solutions satisfying appropriate integrability conditions.

Suggested Citation

  • Meiners, Matthias, 2009. "Weighted branching and a pathwise renewal equation," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2579-2597, August.
  • Handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2579-2597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(09)00016-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iksanov, Aleksander M., 2004. "Elementary fixed points of the BRW smoothing transforms with infinite number of summands," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 27-50, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olvera-Cravioto, Mariana, 2012. "Tail behavior of solutions of linear recursions on trees," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1777-1807.
    2. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    3. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    4. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    5. Gerold Alsmeyer & Alex Iksanov & Uwe Rösler, 2009. "On Distributional Properties of Perpetuities," Journal of Theoretical Probability, Springer, vol. 22(3), pages 666-682, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:119:y:2009:i:8:p:2579-2597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.