IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v20y2007i1d10.1007_s10959-006-0050-1.html
   My bibliography  Save this article

Uniform Comparison of Tails of (Non-Symmetric) Probability Measures and Their Symmetrized Counterparts with Applications

Author

Listed:
  • Balram S. Rajput

    (The University of Tennessee)

  • Kavi Rama-Murthy

    (Indian Statistical Institute)

Abstract

Let ( $$\mathbb{B}$$ , $$\|\cdot\|$$ ) be a separable Banach space and let $$\mathcal{M}$$ be a class of probability measures on $$\mathbb{B}$$ , and let $$\bar{\mu}$$ denote the symmetrization of $$\mu\in\mathcal{M}$$ . We provide two sufficient conditions (one in terms of certain quantiles and the other in terms of certain moments of $$\|\cdot\|$$ relative to μ and $$\bar{\mu}$$ , $$\mu\in\mathcal{M}$$ ) for the “uniform comparison” of the μ and $$\bar{\mu}$$ measure of the complements of the closed balls of $$\mathbb{B}$$ centered at zero, for every $$\mu\in\mathcal{M}$$ . As a corollary to these “tail comparison inequalities,” we show that three classical results (the Lévy-type Inequalities, the Kwapień-Contraction Inequality, and a part of the Itô–Nisio Theorem) that are valid for the symmetric (but not for the general non-symmetric) independent $$\mathbb{B}$$ -valued random vectors do indeed hold for the independent random vectors whose laws belong to any $$\mathcal{M}$$ which satisfies one of the two noted conditions and which is closed under convolution. We further point out that these three results (respectively, the tail comparison inequalities) are valid for the centered log-concave, as well as, for the strictly α-stable (or the more general strictly (r, α) -semistable) α ≠ 1 random vectors (respectively, probability measures). We also present several examples which we believe form a valuable part of the paper.

Suggested Citation

  • Balram S. Rajput & Kavi Rama-Murthy, 2007. "Uniform Comparison of Tails of (Non-Symmetric) Probability Measures and Their Symmetrized Counterparts with Applications," Journal of Theoretical Probability, Springer, vol. 20(1), pages 87-105, March.
  • Handle: RePEc:spr:jotpro:v:20:y:2007:i:1:d:10.1007_s10959-006-0050-1
    DOI: 10.1007/s10959-006-0050-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-006-0050-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-006-0050-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byczkowski, T. & Nolan, J. P. & Rajput, B., 1993. "Approximation of Multidimensional Stable Densities," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 13-31, July.
    2. Rajput, Balram S. & Rama-Murthy, Kavi, 1987. "Spectral representation of semistable processes, and semistable laws on Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 139-157, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makoto Maejima & Gennady Samorodnitsky, 1999. "Certain Probabilistic Aspects of Semistable Laws," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 449-462, September.
    2. John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
    3. Davydov, Yu. & Nagaev, A. V., 2002. "On Two Aproaches to Approximation of Multidimensional Stable Laws," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 210-239, July.
    4. Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.
    5. Szabolcs Majoros & Andr'as Zempl'eni, 2018. "Multivariate stable distributions and their applications for modelling cryptocurrency-returns," Papers 1810.09521, arXiv.org.
    6. Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
    7. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
    8. Joshua Rushton, 2007. "A Functional LIL for d-Dimensional Stable Processes; Invariance for Lévy- and Other Weakly Convergent Processes," Journal of Theoretical Probability, Springer, vol. 20(3), pages 397-427, September.
    9. Ogata, Hiroaki, 2013. "Estimation for multivariate stable distributions with generalized empirical likelihood," Journal of Econometrics, Elsevier, vol. 172(2), pages 248-254.
    10. Karling, Maicon J. & Lopes, Sílvia R.C. & de Souza, Roberto M., 2023. "Multivariate α-stable distributions: VAR(1) processes, measures of dependence and their estimations," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    11. Abdul-Hamid, Husein & Nolan, John P., 1998. "Multivariate Stable Densities as Functions of One Dimensional Projections," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 80-89, October.
    12. Makoto Maejima & Ken-iti Sato, 1999. "Semi-Selfsimilar Processes," Journal of Theoretical Probability, Springer, vol. 12(2), pages 347-373, April.
    13. Mohammad Mohammadi & Adel Mohammadpour & Hiroaki Ogata, 2015. "On estimating the tail index and the spectral measure of multivariate $$\alpha $$ α -stable distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 549-561, July.
    14. Ramona Serrano Bautista & Leovardo Mata Mata, 2018. "Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana. (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 43-76, May.
    15. Matsui, Muneya & Takemura, Akimichi, 2009. "Integral representations of one-dimensional projections for multivariate stable densities," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 334-344, March.
    16. Dominicy, Yves & Heikkilä, Matias & Ilmonen, Pauliina & Veredas, David, 2020. "Flexible multivariate Hill estimators," Journal of Econometrics, Elsevier, vol. 217(2), pages 398-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:20:y:2007:i:1:d:10.1007_s10959-006-0050-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.