Uniform Comparison of Tails of (Non-Symmetric) Probability Measures and Their Symmetrized Counterparts with Applications
Author
Abstract
Suggested Citation
DOI: 10.1007/s10959-006-0050-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Byczkowski, T. & Nolan, J. P. & Rajput, B., 1993. "Approximation of Multidimensional Stable Densities," Journal of Multivariate Analysis, Elsevier, vol. 46(1), pages 13-31, July.
- Rajput, Balram S. & Rama-Murthy, Kavi, 1987. "Spectral representation of semistable processes, and semistable laws on Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 21(1), pages 139-157, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Makoto Maejima & Gennady Samorodnitsky, 1999. "Certain Probabilistic Aspects of Semistable Laws," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(3), pages 449-462, September.
- John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
- Szabolcs Majoros & Andr'as Zempl'eni, 2018. "Multivariate stable distributions and their applications for modelling cryptocurrency-returns," Papers 1810.09521, arXiv.org.
- Paola Stolfi & Mauro Bernardi & Lea Petrella, 2018. "The sparse method of simulated quantiles: An application to portfolio optimization," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 375-398, August.
- Makoto Maejima & Ken-iti Sato, 1999. "Semi-Selfsimilar Processes," Journal of Theoretical Probability, Springer, vol. 12(2), pages 347-373, April.
- Dominicy, Yves & Heikkilä, Matias & Ilmonen, Pauliina & Veredas, David, 2020. "Flexible multivariate Hill estimators," Journal of Econometrics, Elsevier, vol. 217(2), pages 398-410.
- Davydov, Yu. & Nagaev, A. V., 2002. "On Two Aproaches to Approximation of Multidimensional Stable Laws," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 210-239, July.
- Peters, G.W. & Sisson, S.A. & Fan, Y., 2012. "Likelihood-free Bayesian inference for α-stable models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3743-3756.
- Michael Grabchak, 2021. "On the transition laws of p-tempered $$\alpha $$ α -stable OU-processes," Computational Statistics, Springer, vol. 36(2), pages 1415-1436, June.
- Joshua Rushton, 2007. "A Functional LIL for d-Dimensional Stable Processes; Invariance for Lévy- and Other Weakly Convergent Processes," Journal of Theoretical Probability, Springer, vol. 20(3), pages 397-427, September.
- Ogata, Hiroaki, 2013. "Estimation for multivariate stable distributions with generalized empirical likelihood," Journal of Econometrics, Elsevier, vol. 172(2), pages 248-254.
- Karling, Maicon J. & Lopes, Sílvia R.C. & de Souza, Roberto M., 2023. "Multivariate α-stable distributions: VAR(1) processes, measures of dependence and their estimations," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
- Abdul-Hamid, Husein & Nolan, John P., 1998. "Multivariate Stable Densities as Functions of One Dimensional Projections," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 80-89, October.
- Mohammad Mohammadi & Adel Mohammadpour & Hiroaki Ogata, 2015. "On estimating the tail index and the spectral measure of multivariate $$\alpha $$ α -stable distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 549-561, July.
- Ramona Serrano Bautista & Leovardo Mata Mata, 2018. "Estimación del VaR mediante un modelo condicional multivariado bajo la hipótesis α-estable sub-Gaussiana. (A conditional approach to VaR with multivariate α-stable sub-Gaussian distributions)," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 43-76, May.
- Matsui, Muneya & Takemura, Akimichi, 2009. "Integral representations of one-dimensional projections for multivariate stable densities," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 334-344, March.
More about this item
Keywords
Tail probability; stable; semistable; log concave probability measures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:20:y:2007:i:1:d:10.1007_s10959-006-0050-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.