IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v9y2024i1d10.1186_s41072-023-00159-4.html
   My bibliography  Save this article

4400 TEU cargo ship dynamic analysis by Gaidai reliability method

Author

Listed:
  • Oleg Gaidai

    (Shanghai Ocean University)

  • Fang Wang

    (Shanghai Ocean University)

  • Yu Cao

    (Shanghai Ocean University)

  • Zirui Liu

    (Shanghai Ocean University)

Abstract

Modern cargo vessel transport constitutes an important part of global economy; hence it is of paramount importance to develop novel, more efficient reliability methods for cargo ships, especially if onboard recorded data is available. Classic reliability methods, dealing with timeseries, do not have the advantage of dealing efficiently with system high dimensionality and cross-correlation between different dimensions. This study validates novel structural reliability method suitable for multi-dimensional structural systems versus a well-established bivariate statistical method. An example of this reliability study was a chosen container ship subjected to large deck panel stresses during sailing. Risk of losing containers, due to extreme motions is the primary concern for ship cargo transport. Due to non-stationarity and complicated nonlinearities of both waves and ship motions, it is challenging to model such a phenomenon. In the case of extreme motions, the role of nonlinearities dramatically increases, activating effects of second and higher order. Moreover, laboratory tests may also be questioned. Therefore, data measured on actual ships during their voyages in harsh weather provides a unique insight into statistics of ship motions. This study aimed at benchmarking and validation of the state-of-the-art method, which enables extraction of the necessary information about the extreme system dynamics from onboard measured time histories. The method proposed in this study opens up broad possibilities of predicting simply, yet efficiently potential failure or structural damage risks for the nonlinear multi-dimensional cargo vessel dynamic systems as a whole. Note that advocated novel reliability method can be used for a wide range of complex engineering systems, thus not limited to cargo ship only.

Suggested Citation

  • Oleg Gaidai & Fang Wang & Yu Cao & Zirui Liu, 2024. "4400 TEU cargo ship dynamic analysis by Gaidai reliability method," Journal of Shipping and Trade, Springer, vol. 9(1), pages 1-16, December.
  • Handle: RePEc:spr:josatr:v:9:y:2024:i:1:d:10.1186_s41072-023-00159-4
    DOI: 10.1186/s41072-023-00159-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-023-00159-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-023-00159-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:9:y:2024:i:1:d:10.1186_s41072-023-00159-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.