IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v4y2019i1d10.1186_s41072-019-0040-y.html
   My bibliography  Save this article

Factors causing peak energy consumption of reefers at container terminals

Author

Listed:
  • J. H. R. van Duin

    (Delft University of Technology
    Rotterdam University of Applied Sciences)

  • H. Geerlings

    (Erasmus University Rotterdam)

  • L. A. Tavasszy

    (Delft University of Technology)

  • D. L. Bank

    (KLM Engine Services)

Abstract

Reefers are refrigerated containers commonly used for transporting perishable goods such as meat, fish, vegetables and fruit. Nowadays, reefers are responsible for 40% of the total energy consumption of container terminals, when connected to the electricity grid on shore. Every time when a large number of reefers is plugged-in after arrival, peaks in energy consumption occur. As container terminals purchase energy using a demand-based fee, exceeding the reserved capacity during peak times increases the energy costs of the terminal significantly. So far the literature has not dealt with the root causes of peak energy consumption of reefers, or ways to reduce these peaks. The aim of this paper is to identify the root causes and to quantify their importance. We use data of energy consumption of reefers at a large container terminal, over the period of 1 year. In order to identify the importance of factors, we apply a sequential multiple regression analysis approach with backwards feature selection. Variations in energy demand are explained for 77% by the arrival pattern of containers, for about 5% by dwell time and for 2% by other factors, such as container temperature at plug-in. Promising approaches to reduce peak energy consumption of reefers includes dynamic pricing, energy management and specific peak shaving strategies.

Suggested Citation

  • J. H. R. van Duin & H. Geerlings & L. A. Tavasszy & D. L. Bank, 2019. "Factors causing peak energy consumption of reefers at container terminals," Journal of Shipping and Trade, Springer, vol. 4(1), pages 1-17, December.
  • Handle: RePEc:spr:josatr:v:4:y:2019:i:1:d:10.1186_s41072-019-0040-y
    DOI: 10.1186/s41072-019-0040-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-019-0040-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-019-0040-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M, 2016. "Application of weather forecast in conjunction with price-based method for PCM solar passive buildings – An experimental study," Applied Energy, Elsevier, vol. 163(C), pages 9-18.
    2. Barzin, Reza & Chen, John J.J. & Young, Brent R. & Farid, Mohammed M., 2015. "Peak load shifting with energy storage and price-based control system," Energy, Elsevier, vol. 92(P3), pages 505-514.
    3. Fitzgerald, Warren B. & Howitt, Oliver J.A. & Smith, Inga J. & Hume, Anthony, 2011. "Energy use of integral refrigerated containers in maritime transportation," Energy Policy, Elsevier, vol. 39(4), pages 1885-1896, April.
    4. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    5. Prem Vrat & Rachita Gupta & Aman Bhatnagar & Devendra Kumar Pathak & Vijayta Fulzele, 2018. "Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 601-627, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludmiła Filina-Dawidowicz & Csaba Csiszár, 2022. "Influence of Parking Sheds on Energy Efficiency of Road Refrigerated Transport," Energies, MDPI, vol. 15(5), pages 1-18, March.
    2. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafiz Wasim Akram & Samreen Akhtar & Alam Ahmad & Imran Anwar & Mohammad Ali Bait Ali Sulaiman, 2023. "Developing a Conceptual Framework Model for Effective Perishable Food Cold-Supply-Chain Management Based on Structured Literature Review," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    2. Prem Vrat & Rachita Gupta & Aman Bhatnagar & Devendra Kumar Pathak & Vijayta Fulzele, 2018. "Literature review analytics (LRA) on sustainable cold-chain for perishable food products: research trends and future directions," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 601-627, November.
    3. Gholamibozanjani, Gohar & Farid, Mohammed, 2020. "A comparison between passive and active PCM systems applied to buildings," Renewable Energy, Elsevier, vol. 162(C), pages 112-123.
    4. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Miao Su & Su‐Han Woo & Xiaochun Chen & Keun‐sik Park, 2023. "Identifying critical success factors for the agri‐food cold chain's sustainable development: When the strategy system comes into play," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 444-461, January.
    6. Junseung Kim & Kyungku Kim & Kum Fai Yuen & Keun-Sik Park, 2020. "Cost and Scenario Analysis of Intermodal Transportation Routes from Korea to the USA: After the Panama Canal Expansion," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    7. Raut, Rakesh D. & Gardas, Bhaskar B. & Narwane, Vaibhav S. & Narkhede, Balkrishna E., 2019. "Improvement in the food losses in fruits and vegetable supply chain - a perspective of cold third-party logistics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    9. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    10. McKenna, P. & Turner, W.J.N. & Finn, D.P., 2018. "Geocooling with integrated PCM thermal energy storage in a commercial building," Energy, Elsevier, vol. 144(C), pages 865-876.
    11. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    12. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    13. Soares, N. & Matias, T. & Durães, L. & Simões, P.N. & Costa, J.J., 2023. "Thermophysical characterization of paraffin-based PCMs for low temperature thermal energy storage applications for buildings," Energy, Elsevier, vol. 269(C).
    14. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "A review of energy efficiency in ports: Operational strategies, technologies and energy management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 170-182.
    15. Shafiee, Soroush & Zamani-Dehkordi, Payam & Zareipour, Hamidreza & Knight, Andrew M., 2016. "Economic assessment of a price-maker energy storage facility in the Alberta electricity market," Energy, Elsevier, vol. 111(C), pages 537-547.
    16. Jinghan Zhang & Wujun Cao & Minyoung Park, 2019. "Reliability Analysis and Optimization of Cold Chain Distribution System for Fresh Agricultural Products," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    17. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    18. Vladimir Todorovic & Marinko Maslaric & Sanja Bojic & Maja Jokic & Dejan Mircetic & Svetlana Nikolicic, 2018. "Solutions for More Sustainable Distribution in the Short Food Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-27, September.
    19. Thi Yen Pham & Gi-Tae Yeo, 2018. "A Comparative Analysis Selecting the Transport Routes of Electronics Components from China to Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    20. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:4:y:2019:i:1:d:10.1186_s41072-019-0040-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.