IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i1d10.1023_a1022655502360.html
   My bibliography  Save this article

Perturbing the Dual Feasible Region for Solving Convex Quadratic Programs

Author

Listed:
  • S. C. Fang

    (North Carolina State University)

  • H. S. J. Tsao

    (University of California)

Abstract

A dual l p-norm perturbation approach is introduced for solving convex quadratic programming problems. The feasible region of the Lagrangian dual program is approximated by a proper subset that is defined by a single smooth convex constraint involving the l p-norm of a vector measure of constraint violation. It is shown that the perturbed dual program becomes the dual program as p→∞ and, under some standard conditions, the optimal solution of the perturbed dual program converges to a dual optimal solution. A closed-form formula that converts an optimal solution of the perturbed dual program into a feasible solution of the primal convex quadratic program is also provided. Such primal feasible solutions converge to an optimal primal solution as p→∞. The proposed approach generalizes the previously proposed primal perturbation approach with an entropic barrier function. Its theory specializes easily for linear programming.

Suggested Citation

  • S. C. Fang & H. S. J. Tsao, 1997. "Perturbing the Dual Feasible Region for Solving Convex Quadratic Programs," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 73-85, July.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:1:d:10.1023_a:1022655502360
    DOI: 10.1023/A:1022655502360
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022655502360
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022655502360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Tian, 2015. "An exterior point polynomial-time algorithm for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 61(1), pages 51-78, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:1:d:10.1023_a:1022655502360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.