IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v93y1997i2d10.1023_a1022640321499.html
   My bibliography  Save this article

Consumption-Investment Problem with Subsistence Consumption, Bankruptcy, and Random Market Coefficients

Author

Listed:
  • A. Cadenillas

    (University of Alberta)

  • S. P. Sethi

    (University of Toronto)

Abstract

We consider a general continuous-time finite-horizon single-agent consumption and portfolio decision problem with subsistence consumption and value of bankruptcy. Our analysis allows for random market coefficients and general continuously differentiable concave utility functions. We study the time of bankruptcy as a problem of optimal stopping, and succeed in obtaining explicit formulas for the optimal consumption and wealth processes in terms of the optimal bankruptcy time. This paper extends the results of Karatzas, Lehoczky, and Shreve (Ref. 1) on the maximization of expected utility from consumption in a financial market with random coefficients by incorporating subsistence consumption and bankruptcy. It also addresses the random coefficients and finite-horizon version of the problem treated by Sethi, Taksar, and Presman (Ref. 2). The mathematical tools used in our analysis are optimal stopping, stochastic control, martingale theory, and Girsanov change of measure.

Suggested Citation

  • A. Cadenillas & S. P. Sethi, 1997. "Consumption-Investment Problem with Subsistence Consumption, Bankruptcy, and Random Market Coefficients," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 243-272, May.
  • Handle: RePEc:spr:joptap:v:93:y:1997:i:2:d:10.1023_a:1022640321499
    DOI: 10.1023/A:1022640321499
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022640321499
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022640321499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bardhan, Indrajit, 1994. "Consumption and investment under constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 909-929, September.
    2. Sethi, Suresh P. & Taksar, Michael I. & Presman, Ernst L., 1992. "Explicit solution of a general consumption/portfolio problem with subsistence consumption and bankruptcy," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 747-768.
    3. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    4. Sethi, Suresh P. & Taksar, Michael, 1988. "A note on Merton's "Optimum Consumption and Portfolio Rules in a continuous-Time Model"," Journal of Economic Theory, Elsevier, vol. 46(2), pages 395-401, December.
    5. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    6. Lippman, Steven A & McCall, John J & Winston, Wayne L, 1980. "Constant Absolute Risk Aversion, Bankruptcy, and Wealth-Dependent Decisions," The Journal of Business, University of Chicago Press, vol. 53(3), pages 285-296, July.
    7. Ioannis Karatzas & John P. Lehoczky & Suresh P. Sethi & Steven E. Shreve, 1986. "Explicit Solution of a General Consumption/Investment Problem," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 261-294, May.
    8. J. Lehoczky & S. Sethi & S. Shreve, 1983. "Optimal Consumption and Investment Policies Allowing Consumption Constraints and Bankruptcy," Mathematics of Operations Research, INFORMS, vol. 8(4), pages 613-636, November.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Yao, Song, 2017. "Optimal stopping with random maturity under nonlinear expectations," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2586-2629.
    2. Marina Di Giacinto & Salvatore Federico & Fausto Gozzi, 2011. "Pension funds with a minimum guarantee: a stochastic control approach," Finance and Stochastics, Springer, vol. 15(2), pages 297-342, June.
    3. Monique Jeanblanc & Peter Lakner & Ashay Kadam, 2004. "Optimal Bankruptcy Time and Consumption/Investment Policies on an Infinite Horizon with a Continuous Debt Repayment Until Bankruptcy," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 649-671, August.
    4. Zhou Yang & Gechun Liang & Chao Zhou, 2017. "Constrained portfolio-consumption strategies with uncertain parameters and borrowing costs," Papers 1711.02939, arXiv.org, revised Dec 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjiv Ranjan Das & Rangarajan K. Sundaram, 2002. "An approximation algorithm for optimal consumption/investment problems," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 11(2), pages 55-69, April.
    2. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    3. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    4. Ioannis Karatzas & Gordan Zitkovic, 2007. "Optimal consumption from investment and random endowment in incomplete semimartingale markets," Papers 0706.0051, arXiv.org.
    5. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    6. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.
    7. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    8. Constantinos Kardaras & Gordan Zitkovic, 2007. "Stability of the utility maximization problem with random endowment in incomplete markets," Papers 0706.0482, arXiv.org, revised Mar 2010.
    9. Wolfgang Putschögl & Jörn Sass, 2008. "Optimal consumption and investment under partial information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 31(2), pages 137-170, November.
    10. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    11. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    12. Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "The value of knowing the market price of risk," Annals of Operations Research, Springer, vol. 299(1), pages 101-131, April.
    13. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    14. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    15. Zhao, Yonggan & Ziemba, William T., 2008. "Calculating risk neutral probabilities and optimal portfolio policies in a dynamic investment model with downside risk control," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1525-1540, March.
    16. Yuanrong Wang & Tomaso Aste, 2021. "Dynamic Portfolio Optimization with Inverse Covariance Clustering," Papers 2112.15499, arXiv.org, revised Jan 2022.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    19. Oleksii Mostovyi, 2011. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Papers 1107.5852, arXiv.org, revised Jul 2012.
    20. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:93:y:1997:i:2:d:10.1023_a:1022640321499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.