IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v92y1997i2d10.1023_a1022611027877.html
   My bibliography  Save this article

Incorporating Managerial Thinking in Prediction and Control: Case Study of Market Penetration

Author

Listed:
  • S. Beifuss

    (University of Southern California)

  • W. Proskurowski

    (University of Southern California)

  • F. E. Udwadia

    (University of Southern California)

Abstract

Managerial strategies, especially at the higher echelons of management, are often linguistically stated. This is because they need to be based on information which often defies quantification. Such verbal strategies and qualitative information have often been found to be difficult to incorporate in quantitative models. Thus, the quantitative effects of implementing one strategy as opposed to another have generally been difficult to forecast. In this paper, we show that, through the use of fuzzy logic, we can incorporate such qualitative (linguistically stated) information. Furthermore, we show that a fuzzy controller can be designed so as to reach desired goals while being cognizant of linguistically stated strategies, scenarios, and decision rules as well as quantitative data types. The approach is applied to the modeling and control of market penetration, a field which has attracted considerable attention in recent years.

Suggested Citation

  • S. Beifuss & W. Proskurowski & F. E. Udwadia, 1997. "Incorporating Managerial Thinking in Prediction and Control: Case Study of Market Penetration," Journal of Optimization Theory and Applications, Springer, vol. 92(2), pages 225-248, February.
  • Handle: RePEc:spr:joptap:v:92:y:1997:i:2:d:10.1023_a:1022611027877
    DOI: 10.1023/A:1022611027877
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022611027877
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022611027877?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hermann Simon & Karl-Heinz Sebastian, 1987. "Diffusion and Advertising: The German Telephone Campaign," Management Science, INFORMS, vol. 33(4), pages 451-466, April.
    2. Christopher J. Easingwood & Vijay Mahajan & Eitan Muller, 1983. "A Nonuniform Influence Innovation Diffusion Model of New Product Acceptance," Marketing Science, INFORMS, vol. 2(3), pages 273-295.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Dan Horsky & Leonard S. Simon, 1983. "Advertising and the Diffusion of New Products," Marketing Science, INFORMS, vol. 2(1), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    2. Ruiz-Conde, Enar & Wieringa, Jaap E. & Leeflang, Peter S.H., 2014. "Competitive diffusion of new prescription drugs: The role of pharmaceutical marketing investment," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 49-63.
    3. Han, Zhongya & Tang, Zhongjun & He, Bo, 2022. "Improved Bass model for predicting the popularity of product information posted on microblogs," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Benson Tsz Kin Leung, 2022. "Innovation Diffusion among Case-based Decision-makers," Papers 2203.05785, arXiv.org, revised Jan 2023.
    5. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    6. Y. Li & C.J.M. Kool & P.J. Engelen, 2016. "Hydrogen-Fuel Infrastructure Investment with Endogenous Demand: A Real Options Approach," Working Papers 16-12, Utrecht School of Economics.
    7. Bo-Seong Yun & Sang-Gun Lee & Yaichi Aoshima, 2019. "An analysis of the trilemma phenomenon for Apple iPhone and Samsung Galaxy," Service Business, Springer;Pan-Pacific Business Association, vol. 13(4), pages 779-812, December.
    8. Chang, Byeong-Yun & Li, Xu & Kim, Yun Bae, 2014. "Performance comparison of two diffusion models in a saturated mobile phone market," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 41-48.
    9. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    10. Olivier Toubia & Jacob Goldenberg & Rosanna Garcia, 2014. "Improving Penetration Forecasts Using Social Interactions Data," Management Science, INFORMS, vol. 60(12), pages 3049-3066, December.
    11. Lionel Richefort & Jean-Louis Fusillier, 2010. "Imitation, rationalité et adoption de technologies d'irrigation améliorées à l'île de la Réunion," Economie & Prévision, La Documentation Française, vol. 0(2), pages 59-73.
    12. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    13. Yi Xiang & David Soberman & Hubert Gatignon, 2022. "The Effect of Marketing Breadth and Competitive Spread on Category Growth," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 622-644, February.
    14. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    15. Ferreira, Kevin D. & Lee, Chi-Guhn, 2014. "An integrated two-stage diffusion of innovation model with market segmented learning," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 189-201.
    16. Elmar Kiesling & Markus Günther & Christian Stummer & Lea Wakolbinger, 2012. "Agent-based simulation of innovation diffusion: a review," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(2), pages 183-230, June.
    17. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.
    18. Usha Rao, K. & Kishore, V.V.N., 2009. "Wind power technology diffusion analysis in selected states of India," Renewable Energy, Elsevier, vol. 34(4), pages 983-988.
    19. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    20. Hariharan, Vijay Ganesh & Talukdar, Debabrata & Kwon, Changhyun, 2015. "Optimal targeting of advertisement for new products with multiple consumer segments," International Journal of Research in Marketing, Elsevier, vol. 32(3), pages 263-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:92:y:1997:i:2:d:10.1023_a:1022611027877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.