Convexity of Sets and Quadratic Functions on the Hyperbolic Space
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-022-02073-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li-wen Zhou & Yi-bin Xiao & Nan-jing Huang, 2017. "New Characterization of Geodesic Convexity on Hadamard Manifolds with Applications," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 824-844, March.
- O. P. Ferreira & S. Z. Németh, 2019. "On the spherical convexity of quadratic functions," Journal of Global Optimization, Springer, vol. 73(3), pages 537-545, March.
- Alessandro Muscoloni & Josephine Maria Thomas & Sara Ciucci & Ginestra Bianconi & Carlo Vittorio Cannistraci, 2017. "Machine learning meets complex networks via coalescent embedding in the hyperbolic space," Nature Communications, Nature, vol. 8(1), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dezhou Kong & Lishan Liu & Yonghong Wu, 2020. "Isotonicity of Proximity Operators in General Quasi-Lattices and Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 88-104, October.
- Martin Keller-Ressel & Stephanie Nargang, 2020. "The hyperbolic geometry of financial networks," Papers 2005.00399, arXiv.org, revised May 2020.
- Pawanesh & Charu Sharma & Niteesh Sahni, 2024. "Explaining Indian Stock Market through Geometry of Scale free Networks," Papers 2404.04710, arXiv.org, revised Oct 2024.
- Li-wen Zhou & Nan-jing Huang, 2019. "A Revision on Geodesic Pseudo-Convex Combination and Knaster–Kuratowski–Mazurkiewicz Theorem on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1186-1198, September.
- Orizon Pereira Ferreira & Sándor Zoltán Németh & Lianghai Xiao, 2020. "On the Spherical Quasi-convexity of Quadratic Functions on Spherically Subdual Convex Sets," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 1-21, October.
- Van-Bong Nguyen & Thi Ngan Nguyen & Ruey-Lin Sheu, 2020. "Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere," Journal of Global Optimization, Springer, vol. 76(1), pages 121-135, January.
More about this item
Keywords
Hyperbolic space; Convex cone; Convex set; Convex function; Quadratic function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:202:y:2024:i:1:d:10.1007_s10957-022-02073-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.