IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v200y2024i1d10.1007_s10957-023-02339-5.html
   My bibliography  Save this article

Single-Leader-Radner-Equilibrium: A New Approach for a Class of Bilevel Problems Under Uncertainty

Author

Listed:
  • Elisabetta Allevi

    (University of Brescia)

  • Didier Aussel

    (Université de Perpignan Via Domitia)

  • Rossana Riccardi

    (University of Brescia)

  • Domenico Scopelliti

    (University of Brescia)

Abstract

Bilevel problems with several followers, often called Single-Leader-Multi-Follower problems, have been proved to be very useful for modeling hierarchical interactions between agents in economics, industry, etc. When uncertainty must be taken into account, a classical approach is to use stochastic bilevel optimization. In this work, we introduce an alternative approach intrinsically integrating at the same time uncertain future and time-dependent decision processes. It is called Single-Leader-Radner-Equilibrium (SLRE) and is characterized by a hierarchical structure with one leader and several followers competing to reach a Radner equilibrium. A variational reformulation of the quasiconcave SLRE model (that is, where the objective function of the followers is only quasiconcave) is proposed and used to prove the existence of an optimistic solution of the quasiconcave SLRE. Finally, thanks to these developments we present a new approach of optimal design of eco-industrial parks.

Suggested Citation

  • Elisabetta Allevi & Didier Aussel & Rossana Riccardi & Domenico Scopelliti, 2024. "Single-Leader-Radner-Equilibrium: A New Approach for a Class of Bilevel Problems Under Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 344-370, January.
  • Handle: RePEc:spr:joptap:v:200:y:2024:i:1:d:10.1007_s10957-023-02339-5
    DOI: 10.1007/s10957-023-02339-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02339-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02339-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Limosani, Michele & Milasi, Monica & Scopelliti, Domenico, 2021. "Deregulated electricity market, a stochastic variational approach," Energy Economics, Elsevier, vol. 103(C).
    2. Didier Aussel & Anton Svensson, 2019. "Is Pessimistic Bilevel Programming a Special Case of a Mathematical Program with Complementarity Constraints?," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 504-520, May.
    3. D. Aussel & J. Cotrina, 2013. "Quasimonotone Quasivariational Inequalities: Existence Results and Applications," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 637-652, September.
    4. Aussel, Didier & Cao Van, Kien & Salas, David, 2023. "Optimal design of exchange water networks with control inputs in Eco-Industrial Parks," Energy Economics, Elsevier, vol. 120(C).
    5. Monica Milasi & Domenico Scopelliti, 2021. "A Variational Approach to the Maximization of Preferences Without Numerical Representation," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 879-893, September.
    6. Maria Bernadette Donato & Monica Milasi & Antonio Villanacci, 2018. "Variational Formulation of a General Equilibrium Model with Incomplete Financial Markets and Numeraire Assets: Existence," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 425-451, November.
    7. Stephan Dempe, 2020. "Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 581-672, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    2. Domenico Scopelliti, 2022. "On a Class of Multistage Stochastic Hierarchical Problems," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    3. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    4. Juan Guillermo Garrido & Pedro Pérez-Aros & Emilio Vilches, 2023. "Random Multifunctions as Set Minimizers of Infinitely Many Differentiable Random Functions," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 86-110, July.
    5. R. Cambini & R. Riccardi & D. Scopelliti, 2023. "Solving linear multiplicative programs via branch-and-bound: a computational experience," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    6. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    7. G. Constante-Flores & A. J. Conejo & S. Constante-Flores, 2022. "Solving certain complementarity problems in power markets via convex programming," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 465-491, October.
    8. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    9. Akshit Goyal & Yiling Zhang & Chuan He, 2023. "Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1342-1360, November.
    10. Didier Aussel & Asrifa Sultana & Vellaichamy Vetrivel, 2016. "On the Existence of Projected Solutions of Quasi-Variational Inequalities and Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 818-837, September.
    11. Fakhry, Ramy & Hassini, Elkafi & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2022. "Tri-level mixed-binary linear programming: Solution approaches and application in defending critical infrastructure," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1114-1131.
    12. Elena Molho & Domenico Scopelliti, 2023. "On the study of multistage stochastic vector quasi-variational problems," Journal of Global Optimization, Springer, vol. 86(4), pages 931-952, August.
    13. Gang Yao & Rui Li & Yang Yang, 2023. "An Improved Multi-Objective Optimization and Decision-Making Method on Construction Sites Layout of Prefabricated Buildings," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    14. Mircea Balaj & Marco Castellani & Massimiliano Giuli, 2023. "New criteria for existence of solutions for equilibrium problems," Computational Management Science, Springer, vol. 20(1), pages 1-16, December.
    15. Maria Bernadette Donato & Monica Milasi & Antonio Villanacci, 2018. "Variational Formulation of a General Equilibrium Model with Incomplete Financial Markets and Numeraire Assets: Existence," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 425-451, November.
    16. Aussel, Didier & Brotcorne, Luce & Lepaul, Sébastien & von Niederhäusern, Léonard, 2020. "A trilevel model for best response in energy demand-side management," European Journal of Operational Research, Elsevier, vol. 281(2), pages 299-315.
    17. John Cotrina & Michel Théra & Javier Zúñiga, 2020. "An Existence Result for Quasi-equilibrium Problems via Ekeland’s Variational Principle," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 336-355, November.
    18. Elias S. Helou & Sandra A. Santos & Lucas E. A. Simões, 2020. "Analysis of a New Sequential Optimality Condition Applied to Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 433-447, May.
    19. Orestes Bueno & John Cotrina & Yboon García, 2023. "Existence and Uniqueness of Maximal Elements for Preference Relations: Variational Approach," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1246-1263, September.
    20. Maximilian Merkert & Galina Orlinskaya & Dieter Weninger, 2022. "An exact projection-based algorithm for bilevel mixed-integer problems with nonlinearities," Journal of Global Optimization, Springer, vol. 84(3), pages 607-650, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:200:y:2024:i:1:d:10.1007_s10957-023-02339-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.