Continuous-Time Markowitz’s Mean-Variance Model Under Different Borrowing and Saving Rates
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-023-02259-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wendell H. Fleming & Thaleia Zariphopoulou, 1991. "An Optimal Investment/Consumption Model with Borrowing," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 802-822, November.
- Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
- Jie Xiong & Zuo Quan Xu & Jiayu Zheng, 2021. "Mean–variance portfolio selection under partial information with drift uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 21(9), pages 1461-1473, September.
- Jianming Xia, 2005. "Mean–Variance Portfolio Choice: Quadratic Partial Hedging," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 533-538, July.
- Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
- M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
- Henry R. Richardson, 1989. "A Minimum Variance Result in Continuous Trading Portfolio Optimization," Management Science, INFORMS, vol. 35(9), pages 1045-1055, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zongxia Liang & Jianming Xia & Keyu Zhang, 2023. "Equilibrium stochastic control with implicitly defined objective functions," Papers 2312.15173, arXiv.org, revised Dec 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chonghu Guan & Xiaomin Shi & Zuo Quan Xu, 2022. "Continuous-time Markowitz's mean-variance model under different borrowing and saving rates," Papers 2201.00914, arXiv.org, revised May 2023.
- Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
- Jan Kallsen & Johannes Muhle-Karbe, 2013. "The General Structure of Optimal Investment and Consumption with Small Transaction Costs," Papers 1303.3148, arXiv.org, revised May 2015.
- Bayraktar, Erhan & Young, Virginia R., 2007.
"Minimizing the probability of lifetime ruin under borrowing constraints,"
Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 196-221, July.
- Erhan Bayraktar & Virginia R. Young, 2007. "Minimizing the Probability of Lifetime Ruin under Borrowing Constraints," Papers math/0703850, arXiv.org.
- Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
- Hung-Hsi Huang & David Jou, 2009. "Multiperiod dynamic investment for a generalized situation," Applied Financial Economics, Taylor & Francis Journals, vol. 19(21), pages 1761-1766.
- Alev{s} v{C}ern'y & Christoph Czichowsky, 2022. "The law of one price in quadratic hedging and mean-variance portfolio selection," Papers 2210.15613, arXiv.org, revised Sep 2024.
- Alet Roux, 2007. "The fundamental theorem of asset pricing under proportional transaction costs," Papers 0710.2758, arXiv.org.
- Shuzhen Yang, 2019. "Multi-time state mean-variance model in continuous time," Papers 1912.01793, arXiv.org.
- Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
- Alev{s} v{C}ern'y & Stephan Denkl & Jan Kallsen, 2013. "Hedging in L\'evy Models and the Time Step Equivalent of Jumps," Papers 1309.7833, arXiv.org, revised Jul 2017.
- Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
- Chi Kin Lam & Yuhong Xu & Guosheng Yin, 2016. "Dynamic portfolio selection without risk-free assets," Papers 1602.04975, arXiv.org.
- Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
- Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
- Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
- Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
- Cuoco, Domenico & Liu, Hong, 2000.
"Optimal consumption of a divisible durable good,"
Journal of Economic Dynamics and Control, Elsevier, vol. 24(4), pages 561-613, April.
- Domenico Cuoco & Hong Liu, "undated". "Optimal Consumption of a Divisible Durable Good," Rodney L. White Center for Financial Research Working Papers 20-98, Wharton School Rodney L. White Center for Financial Research.
- Shuzhen Yang, 2019. "A varying terminal time mean-variance model," Papers 1909.13102, arXiv.org, revised Jan 2020.
- Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
More about this item
Keywords
Markowitz’s mean-variance portfolio selection; Fully nonlinear PDE; Free boundary; Dual transformation; Different borrowing and saving rates;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:199:y:2023:i:1:d:10.1007_s10957-023-02259-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.