IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v195y2022i3d10.1007_s10957-022-02109-9.html
   My bibliography  Save this article

Endogenous Duration of Long-term Agreements in Cooperative Dynamic Games with Nontransferable Utility

Author

Listed:
  • Elena M. Parilina

    (Saint Petersburg State University)

  • Puduru Viswanadha Reddy

    (Indian Institute of Technology Madras)

  • Georges Zaccour

    (GERAD and HEC Montréal)

Abstract

In this paper, we study the time consistency of cooperative agreements in dynamic games with non-transferable utility. An agreement designed at the outset of a game is time-consistent (or sustainable) if it remains in place for the entire duration of the game, that is, if the players would not benefit from switching to their non-cooperative strategies. The literature has highlighted that, since side payments are not allowed, the design of such an agreement is very challenging. To address this issue, we introduce different notions for the temporal stability of an agreement and determine endogenously the duration of the agreement. We illustrate our general results with a linear-quadratic difference game and show that an agreement’s duration can be easily assessed using the problem data. We also study the effect of information structure on the endogenous duration of the agreement. We illustrate our results with a numerical example.

Suggested Citation

  • Elena M. Parilina & Puduru Viswanadha Reddy & Georges Zaccour, 2022. "Endogenous Duration of Long-term Agreements in Cooperative Dynamic Games with Nontransferable Utility," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 808-836, December.
  • Handle: RePEc:spr:joptap:v:195:y:2022:i:3:d:10.1007_s10957-022-02109-9
    DOI: 10.1007/s10957-022-02109-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02109-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02109-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D.W.K. Yeung & L.A. Petrosyan, 2005. "Subgame Consistent Solutions of a Cooperative Stochastic Differential Game with Nontransferable Payoffs," Journal of Optimization Theory and Applications, Springer, vol. 124(3), pages 701-724, March.
    2. Kalai, Ehud, 1977. "Proportional Solutions to Bargaining Situations: Interpersonal Utility Comparisons," Econometrica, Econometric Society, vol. 45(7), pages 1623-1630, October.
    3. Alain Haurie & Jacek B Krawczyk & Georges Zaccour, 2012. "Games and Dynamic Games," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8442, February.
    4. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    5. Sorger, Gerhard, 2006. "Recursive Nash bargaining over a productive asset," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2637-2659, December.
    6. David W.K. Yeung & Leon A. Petrosyan, 2016. "Subgame Consistent Cooperation," Theory and Decision Library C, Springer, number 978-981-10-1545-8, December.
    7. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    8. Haurie, Alain & Pohjola, Matti, 1987. "Efficient equilibria in a differential game of capitalism," Journal of Economic Dynamics and Control, Elsevier, vol. 11(1), pages 65-78, March.
    9. Dockner,Engelbert J. & Jorgensen,Steffen & Long,Ngo Van & Sorger,Gerhard, 2000. "Differential Games in Economics and Management Science," Cambridge Books, Cambridge University Press, number 9780521637329, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Parilina & Georges Zaccour, 2016. "Strategic Support of Node-Consistent Cooperative Outcomes in Dynamic Games Played Over Event Trees," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 1-16, June.
    2. Anna N. Rettieva, 2022. "Dynamic multicriteria games with asymmetric players," Journal of Global Optimization, Springer, vol. 83(3), pages 521-537, July.
    3. Anna Castañer & Jesús Marín-Solano & Carmen Ribas, 2021. "A time consistent dynamic bargaining procedure in differential games with hterogeneous discounting," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 555-584, June.
    4. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    5. Lea Melnikovová, 2017. "Can Game Theory Help to Mitigate Water Conflicts in the Syrdarya Basin?," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(4), pages 1393-1401.
    6. Daniele Cassese & Paolo Pin, 2018. "Decentralized Pure Exchange Processes on Networks," Papers 1803.08836, arXiv.org, revised Mar 2022.
    7. José-Manuel Giménez-Gómez & António Osório & Josep E. Peris, 2015. "From Bargaining Solutions to Claims Rules: A Proportional Approach," Games, MDPI, vol. 6(1), pages 1-7, March.
    8. Takeuchi, Ai & Veszteg, Róbert F. & Kamijo, Yoshio & Funaki, Yukihiko, 2022. "Bargaining over a jointly produced pie: The effect of the production function on bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 134(C), pages 169-198.
    9. Javier Frutos & Guiomar Martín-Herrán, 2018. "Selection of a Markov Perfect Nash Equilibrium in a Class of Differential Games," Dynamic Games and Applications, Springer, vol. 8(3), pages 620-636, September.
    10. Hwang, Sung-Ha & Rey-Bellet, Luc, 2021. "Positive feedback in coordination games: Stochastic evolutionary dynamics and the logit choice rule," Games and Economic Behavior, Elsevier, vol. 126(C), pages 355-373.
    11. Saglam, Ismail, 2016. "An Alternative Characterization for Iterated Kalai-Smorodinsky-Nash Compromise," MPRA Paper 73564, University Library of Munich, Germany.
    12. Eric van Damme & Xu Lang, 2022. "Two-Person Bargaining when the Disagreement Point is Private Information," Papers 2211.06830, arXiv.org, revised Jan 2024.
    13. Moreno-Ternero, Juan D. & Roemer, John E., 2012. "A common ground for resource and welfare egalitarianism," Games and Economic Behavior, Elsevier, vol. 75(2), pages 832-841.
    14. Nejat Anbarci & Ching-jen Sun, 2011. "Distributive justice and the Nash bargaining solution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(3), pages 453-470, September.
    15. Bossert, Walter & Peters, Hans, 2000. "Multi-attribute decision-making in individual and social choice," Mathematical Social Sciences, Elsevier, vol. 40(3), pages 327-339, November.
    16. Saglam, Ismail, 2022. "Two-player bargaining problems with unilateral pre-donation," MPRA Paper 115203, University Library of Munich, Germany.
    17. Ismail Saglam, 2017. "Iterated Kalai–Smorodinsky–Nash compromise," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 335-349, November.
    18. Shiran Rachmilevitch, 2022. "Pre-bargaining Investment Implies a Pareto Ranking of Bargaining Solutions," Group Decision and Negotiation, Springer, vol. 31(4), pages 769-787, August.
    19. Jaume García Segarra & Miguel Ginés Vilar, 2011. "Weighted Proportional Losses Solution," ThE Papers 10/21, Department of Economic Theory and Economic History of the University of Granada..
    20. Walter Trockel, 2015. "Axiomatization of the discrete Raiffa solution," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 9-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:195:y:2022:i:3:d:10.1007_s10957-022-02109-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.