IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v194y2022i3d10.1007_s10957-022-02071-6.html
   My bibliography  Save this article

Quadratic Growth and Strong Metric Subregularity of the Subdifferential for a Class of Non-prox-regular Functions

Author

Listed:
  • Nguyen Huy Chieu

    (Vinh University)

  • Nguyen Thi Quynh Trang

    (Vinh University)

  • Ha Anh Tuan

    (Ho Chi Minh City University of Transport)

Abstract

This paper mainly studies the quadratic growth and the strong metric subregularity of the subdifferential of a function that can be represented as the sum of a function twice differentiable in the extended sense and a subdifferentially continuous, prox-regular, twice epi-differentiable function. For such a function, which is not necessarily prox-regular, it is shown that the quadratic growth, the strong metric subregularity of the subdifferential at a local minimizer, and the positive definiteness of the subgradient graphical derivative at a stationary point are equivalent. In addition, other characterizations of the quadratic growth and the strong metric subregularity of the subdifferential are also given. Besides, properties of functions twice differentiable in the extended sense are examined.

Suggested Citation

  • Nguyen Huy Chieu & Nguyen Thi Quynh Trang & Ha Anh Tuan, 2022. "Quadratic Growth and Strong Metric Subregularity of the Subdifferential for a Class of Non-prox-regular Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1081-1106, September.
  • Handle: RePEc:spr:joptap:v:194:y:2022:i:3:d:10.1007_s10957-022-02071-6
    DOI: 10.1007/s10957-022-02071-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02071-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02071-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    2. Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
    2. Yunier Bello-Cruz & Guoyin Li & Tran Thai An Nghia, 2022. "Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 167-190, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:194:y:2022:i:3:d:10.1007_s10957-022-02071-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.