IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v189y2021i3d10.1007_s10957-021-01866-3.html
   My bibliography  Save this article

Nonemptiness and Compactness of Solution Sets to Weakly Homogeneous Generalized Variational Inequalities

Author

Listed:
  • Meng-Meng Zheng

    (Tianjin University)

  • Zheng-Hai Huang

    (Tianjin University)

  • Xue-Li Bai

    (South China Normal University)

Abstract

In this paper, we deal with the weakly homogeneous generalized variational inequality, which provides a unified setting for several special variational inequalities and complementarity problems studied in recent years. By exploiting weakly homogeneous structures of involved map pairs and using degree theory, we establish a result which demonstrates the connection between weakly homogeneous generalized variational inequalities and weakly homogeneous generalized complementarity problems. Subsequently, we obtain a result on the nonemptiness and compactness of solution sets to weakly homogeneous generalized variational inequalities by utilizing Harker–Pang-type condition, which can lead to a Hartman–Stampacchia-type existence theorem. Last, we give several copositivity results for weakly homogeneous generalized variational inequalities, which can reduce to some existing ones.

Suggested Citation

  • Meng-Meng Zheng & Zheng-Hai Huang & Xue-Li Bai, 2021. "Nonemptiness and Compactness of Solution Sets to Weakly Homogeneous Generalized Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 919-937, June.
  • Handle: RePEc:spr:joptap:v:189:y:2021:i:3:d:10.1007_s10957-021-01866-3
    DOI: 10.1007/s10957-021-01866-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01866-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01866-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    2. Vu Trung Hieu, 2020. "Solution maps of polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 77(4), pages 807-824, August.
    3. M. Seetharama Gowda & Jong-Shi Pang, 1992. "Some Existence Results for Multivalued Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 657-669, August.
    4. Jong-Shi Pang & Masao Fukushima, 2005. "Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games," Computational Management Science, Springer, vol. 2(1), pages 21-56, January.
    5. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    6. M. Seetharama Gowda & Jong-Shi Pang, 1994. "Stability Analysis of Variational Inequalities and Nonlinear Complementarity Problems, via the Mixed Linear Complementarity Problem and Degree Theory," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 831-879, November.
    7. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part III: Applications," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 771-791, December.
    8. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    2. Tong-tong Shang & Jing Yang & Guo-ji Tang, 2022. "Generalized Polynomial Complementarity Problems over a Polyhedral Cone," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 443-483, February.
    3. Xueli Bai & Mengmeng Zheng & Zheng-Hai Huang, 2021. "Unique solvability of weakly homogeneous generalized variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 921-943, August.
    4. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    5. Zhenyu Ming & Liping Zhang & Liqun Qi, 2020. "Expected residual minimization method for monotone stochastic tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 871-896, December.
    6. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    7. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    8. K. Palpandi & Sonali Sharma, 2021. "Tensor Complementarity Problems with Finite Solution Sets," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 951-965, September.
    9. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    10. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    11. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    12. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    13. Giorgia Oggioni & Yves Smeers & Elisabetta Allevi & Siegfried Schaible, 2012. "A Generalized Nash Equilibrium Model of Market Coupling in the European Power System," Networks and Spatial Economics, Springer, vol. 12(4), pages 503-560, December.
    14. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    15. Ciarcià, Carla & Daniele, Patrizia, 2016. "New existence theorems for quasi-variational inequalities and applications to financial models," European Journal of Operational Research, Elsevier, vol. 251(1), pages 288-299.
    16. Contreras, Javier & Krawczyk, Jacek & Zuccollo, James, 2008. "The invisible polluter: Can regulators save consumer surplus?," MPRA Paper 9890, University Library of Munich, Germany.
    17. Jiang, Zhoutong & Lei, Chao & Ouyang, Yanfeng, 2020. "Optimal investment and management of shared bikes in a competitive market," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 143-155.
    18. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    19. J. Contreras & J. B. Krawczyk & J. Zuccollo, 2016. "Economics of collective monitoring: a study of environmentally constrained electricity generators," Computational Management Science, Springer, vol. 13(3), pages 349-369, July.
    20. Julien, Ludovic A., 2017. "On noncooperative oligopoly equilibrium in the multiple leader–follower game," European Journal of Operational Research, Elsevier, vol. 256(2), pages 650-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:189:y:2021:i:3:d:10.1007_s10957-021-01866-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.