IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v189y2021i1d10.1007_s10957-021-01832-z.html
   My bibliography  Save this article

Extremal Shift Rule and Viability Property for Mean Field-Type Control Systems

Author

Listed:
  • Yurii Averboukh

    (Krasovskii Institute of Mathematics and Mechanics
    Ural Federal University
    Higher School of Economics)

  • Antonio Marigonda

    (University of Verona)

  • Marc Quincampoix

    (Univ Brest)

Abstract

We investigate when a mean field-type control system can fulfill a given constraint. Namely, given a closed set of probability measures on the torus, starting from any initial probability measure belonging to this set, does there exist a solution to the mean field control system remaining in it for any time? This property—the so-called viability property—is equivalently characterized through a property involving normals to the given set of probability measures. We prove that, if the Hamiltonian is nonpositive at any normal distribution to the given set, then the feedback strategy realizing the extremal shift rule provides the approximate viability. This implies the usual viability property. Conversely, the Hamiltonian is nonpositive at any normal distribution if the given set is viable. Our approach enables us to derive generalized feedback laws which ensure the trajectory to fulfill the constraint. This generalized feedback called here extremely shift rule is inspired by constructive motions developed by Krasovskii and Subbotin for differential games.

Suggested Citation

  • Yurii Averboukh & Antonio Marigonda & Marc Quincampoix, 2021. "Extremal Shift Rule and Viability Property for Mean Field-Type Control Systems," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 244-270, April.
  • Handle: RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01832-z
    DOI: 10.1007/s10957-021-01832-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01832-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01832-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Cardaliaguet & M. Quincampoix, 2008. "Deterministic Differential Games Under Probability Knowledge Of Initial Condition," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-16.
    2. Yurii Averboukh, 2019. "Krasovskii–Subbotin Approach to Mean Field Type Differential Games," Dynamic Games and Applications, Springer, vol. 9(3), pages 573-593, September.
    3. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossana Capuani & Antonio Marigonda & Marc Quincampoix, 2024. "Set-Driven Evolution for Multiagent System," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 280-307, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campi, Luciano & Zabaljauregui, Diego, 2020. "Optimal market making under partial information with general intensities," LSE Research Online Documents on Economics 104612, London School of Economics and Political Science, LSE Library.
    2. He, Wei & Sun, Yeneng, 2013. "Stationary Markov Perfect Equilibria in Discounted Stochastic Games," MPRA Paper 51274, University Library of Munich, Germany.
    3. Eduardo Perez & Delphine Prady, 2012. "Complicating to Persuade?," Working Papers hal-03583827, HAL.
    4. Romain Blanchard & Laurence Carassus & Miklós Rásonyi, 2018. "No-arbitrage and optimal investment with possibly non-concave utilities: a measure theoretical approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 241-281, October.
    5. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    6. He, Wei & Yannelis, Nicholas C., 2015. "Equilibrium theory under ambiguity," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 86-95.
    7. Massimiliano Amarante & Mario Ghossoub & Edmund Phelps, 2012. "Contracting for Innovation under Knightian Uncertainty," Cahiers de recherche 18-2012, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Sudhir A. Shah, 2016. "The Generalized Arrow-Pratt Coefficient," Working Papers id:10795, eSocialSciences.
    9. Xiaochi Wu, 2021. "Differential Games with Incomplete Information and with Signal Revealing: The Symmetric Case," Dynamic Games and Applications, Springer, vol. 11(4), pages 863-891, December.
    10. Luçon, Eric, 2020. "Quenched asymptotics for interacting diffusions on inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6783-6842.
    11. Lashi Bandara & Paul Bryan, 2020. "Heat kernels and regularity for rough metrics on smooth manifolds," Mathematische Nachrichten, Wiley Blackwell, vol. 293(12), pages 2255-2270, December.
    12. Carlos Pimienta & Jianfei Shen, 2014. "On the equivalence between (quasi-)perfect and sequential equilibria," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 395-402, May.
    13. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    14. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    15. Toraubally, Waseem A., 2018. "Large market games, the law of one price, and market structure," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 13-26.
    16. Atı̇la Abdulkadı̇roğlu & Joshua D. Angrist & Yusuke Narita & Parag Pathak, 2022. "Breaking Ties: Regression Discontinuity Design Meets Market Design," Econometrica, Econometric Society, vol. 90(1), pages 117-151, January.
    17. Mira Frick & Ryota Iijima & Tomasz Strzalecki, 2019. "Dynamic Random Utility," Econometrica, Econometric Society, vol. 87(6), pages 1941-2002, November.
    18. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    19. Basile, Achille & Graziano, Maria Gabriella & Papadaki, Maria & Polyrakis, Ioannis A., 2017. "Cones with semi-interior points and equilibrium," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 36-48.
    20. Elliot Lipnowski & Laurent Mathevet & Dong Wei, 2020. "Attention Management," American Economic Review: Insights, American Economic Association, vol. 2(1), pages 17-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:189:y:2021:i:1:d:10.1007_s10957-021-01832-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.